Chapter 8 Introduction to randomization, Part 1
2.0
8.1 Introduction
In this module, we’ll learn about randomization and simulation. When we want to understand how sampling works, it’s helpful to simulate the process of drawing samples repeatedly from a population. In the days before computing, this was very difficult to do. Now, a few simple lines of computer code can generate thousands (even millions) of random samples, often in a matter of seconds or less.
8.1.1 Install new packages
If you are using RStudio Workbench, you do not need to install any packages. (Any packages you need should already be installed by the server administrators.)
If you are using R and RStudio on your own machine instead of accessing RStudio Workbench through a browser, you’ll need to type the following command at the Console:
install.packages("mosaic")
8.1.2 Download the R notebook file
Check the upper-right corner in RStudio to make sure you’re in your intro_stats
project. Then click on the following link to download this chapter as an R notebook file (.Rmd
).
Once the file is downloaded, move it to your project folder in RStudio and open it there.
8.1.3 Restart R and run all chunks
In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.
8.1.4 Load packages
We load the tidyverse
package. The mosaic
package contains some tools for making it easier to learn about randomization and simulation.
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6 ✔ purrr 0.3.4
## ✔ tibble 3.1.8 ✔ dplyr 1.0.10
## ✔ tidyr 1.2.0 ✔ stringr 1.4.1
## ✔ readr 2.1.2 ✔ forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
##
## The following object is masked from 'package:Matrix':
##
## mean
##
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
##
## The following object is masked from 'package:purrr':
##
## cross
##
## The following object is masked from 'package:ggplot2':
##
## stat
##
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
##
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
8.2 Sample and population
The goal of the next few chapters is to help you think about the process of sampling from a population. What do these terms mean?
A population is a group of objects we would like to study. If that sounds vague, that’s because it is. A population can be a group of any size and of any type of thing in which we’re interested. Often, populations refer to groups of people. For example, in an election, the population of interest is all voters. But if you’re a biologist, you might study populations of other kinds of organisms. If you’re an engineer, you might study populations of bolts on bridges. If you’re in finance, you might study populations of loans.
Populations are usually inaccessible in their entirety. It is impossible to survey every voter in any reasonably sized election, for example. Therefore, to study them, we have to collect a sample. A sample is a subset of the population. We might conduct a poll of 2000 voters to try to learn about voting intentions for the entire population. Of course, for that to work, the sample has to be representative of its population. We’ll have more to say about that in the future.
8.3 Flipping a coin
Before we talk about how samples are obtained from populations in the real world, we’re going to perform some simulations.
One of the simplest acts to simulate is flipping a coin. We could get an actual coin and physically flip it over and over again, but that is time-consuming and annoying. It is much easier to flip a “virtual” coin inside the computer. One way to accomplish this in R is to use the rflip
command from the mosaic
package. To make sure we’re flipping a fair coin, we’ll say that we want a 50% chance of heads by including the parameter prob = 0.5
.
One more bit of technical detail. Since there will be some randomness involved here, we will need to include an R command to ensure that we all get the same results every time this code runs. This is called “setting the seed”. Don’t worry too much about what this is doing under the hood. The basic idea is that two people who start with the same seed will generate the same sequence of “random” numbers.
The seed 1234
in the chunk below is totally arbitrary. It could have been any number at all. (And, in fact, we’ll use different numbers just for fun.) If you change the seed, you will get different output, so we all need to use the same seed. But the actual common value we all use for the seed is irrelevant.
Here is one coin flip with a 50% chance of coming up heads:
##
## Flipping 1 coin [ Prob(Heads) = 0.5 ] ...
##
## T
##
## Number of Heads: 0 [Proportion Heads: 0]
Here are ten coin flips, each with a 50% chance of coming up heads:
##
## Flipping 10 coins [ Prob(Heads) = 0.5 ] ...
##
## T H H H H H T T H H
##
## Number of Heads: 7 [Proportion Heads: 0.7]
Just to confirm that this is a random process, let’s flip ten coins again (but without setting the seed again):
##
## Flipping 10 coins [ Prob(Heads) = 0.5 ] ...
##
## H H T H T H T T T T
##
## Number of Heads: 4 [Proportion Heads: 0.4]
If we return to the previous seed of 1234, we should obtain the same ten coin flips we did at first:
##
## Flipping 10 coins [ Prob(Heads) = 0.5 ] ...
##
## T H H H H H T T H H
##
## Number of Heads: 7 [Proportion Heads: 0.7]
And just to see the effect of setting a different seed:
##
## Flipping 10 coins [ Prob(Heads) = 0.5 ] ...
##
## H H H T H H T H H H
##
## Number of Heads: 8 [Proportion Heads: 0.8]
8.4 Multiple simulations
Suppose now that you are not the only person flipping coins. Suppose a bunch of people in a room are all flipping coins. We’ll start with ten coin flips per person, a task that could be reasonably done even without a computer.
You might observe three heads in ten flips. Fine, but what about everyone else in the room? What numbers of heads will they see?
The do
command from mosaic
is a way of doing something multiple times. Imagine there are twenty people in the room, each flipping a coin ten times, each time with a 50% probability of coming up heads. Observe:
## n heads tails prop
## 1 10 2 8 0.2
## 2 10 5 5 0.5
## 3 10 5 5 0.5
## 4 10 4 6 0.4
## 5 10 4 6 0.4
## 6 10 7 3 0.7
## 7 10 6 4 0.6
## 8 10 5 5 0.5
## 9 10 7 3 0.7
## 10 10 7 3 0.7
## 11 10 6 4 0.6
## 12 10 7 3 0.7
## 13 10 7 3 0.7
## 14 10 6 4 0.6
## 15 10 7 3 0.7
## 16 10 6 4 0.6
## 17 10 7 3 0.7
## 18 10 3 7 0.3
## 19 10 4 6 0.4
## 20 10 7 3 0.7
The syntax could not be any simpler: do(20) *
means, literally, “do twenty times.” In other words, this command is telling R to repeat an action twenty times, where the action is flipping a single coin ten times.
You’ll notice that in place of a list of outcomes (H or T) of all the individual flips, we have instead a summary of the number of heads and tails each person sees. Each row represents a person, and the columns give information about each person’s flips. (There are n = 10
flips for each person, but then the number of heads/tails—and the corresponding “proportion” of heads—changes from person to person.)
Looking at the above rows and columns, we see that the output of our little coin-flipping experiment is actually stored in a data frame! Let’s give it a name and work with it.
## n heads tails prop
## 1 10 2 8 0.2
## 2 10 5 5 0.5
## 3 10 5 5 0.5
## 4 10 4 6 0.4
## 5 10 4 6 0.4
## 6 10 7 3 0.7
## 7 10 6 4 0.6
## 8 10 5 5 0.5
## 9 10 7 3 0.7
## 10 10 7 3 0.7
## 11 10 6 4 0.6
## 12 10 7 3 0.7
## 13 10 7 3 0.7
## 14 10 6 4 0.6
## 15 10 7 3 0.7
## 16 10 6 4 0.6
## 17 10 7 3 0.7
## 18 10 3 7 0.3
## 19 10 4 6 0.4
## 20 10 7 3 0.7
It is significant that we can store our outcomes this way. Because we have a data frame, we can apply all our data analysis tools (graphs, charts, tables, summary statistics, etc.) to the “data” generated from our set of simulations.
For example, what is the mean number of heads these twenty people observed?
## [1] 5.6
Exercise 2
The data frame coin_flips_20_10
contains four variables: n
, heads
, tails
, and prop
. In the code chunk above, we calculated mean(coin_flips_20_10$heads)
which gave us the mean count of heads for all people flipping coins. Instead of calculating the mean count of heads, change the variable from heads
to prop
to calculate the mean proportion of heads. Then explain why your answer makes sense in light of the mean count of heads calculated above.
Let’s look at a histogram of the number of heads we see in the simulated flips. (The fancy stuff in scale_x_continuous
is just making sure that the x-axis goes from 0 to 10 and that the tick marks appear on each whole number.)
ggplot(coin_flips_20_10, aes(x = heads)) +
geom_histogram(binwidth = 0.5) +
scale_x_continuous(limits = c(-1, 11), breaks = seq(0, 10, 1))
## Warning: Removed 2 rows containing missing values (geom_bar).
Let’s do the same thing, but now let’s consider the proportion of heads.
ggplot(coin_flips_20_10, aes(x = prop)) +
geom_histogram(binwidth = 0.05) +
scale_x_continuous(limits = c(-0.1, 1.1), breaks = seq(0, 1, 0.1))
## Warning: Removed 2 rows containing missing values (geom_bar).
8.5 Bigger and better!
With only twenty people, it was possible that, for example, nobody would get all heads or all tails. Indeed, in coin_flips_20_10
there were no people who got all heads or all tails. Also, there were more people with six and seven heads than with five heads, even though we “expected” the average to be five heads. There is nothing particularly significant about that; it happened by pure chance alone. Another run through the above commands would generate a somewhat different outcome. That’s what happens when things are random.
Instead, let’s imagine that we recruited way more people to flip coins with us. Let’s try it again with 2000 people:
## n heads tails prop
## 1 10 4 6 0.4
## 2 10 4 6 0.4
## 3 10 4 6 0.4
## 4 10 6 4 0.6
## 5 10 5 5 0.5
## 6 10 4 6 0.4
## 7 10 4 6 0.4
## 8 10 4 6 0.4
## 9 10 3 7 0.3
## 10 10 1 9 0.1
## 11 10 5 5 0.5
## 12 10 5 5 0.5
## 13 10 7 3 0.7
## 14 10 7 3 0.7
## 15 10 5 5 0.5
## 16 10 3 7 0.3
## 17 10 5 5 0.5
## 18 10 5 5 0.5
## 19 10 9 1 0.9
## 20 10 6 4 0.6
## 21 10 7 3 0.7
## 22 10 2 8 0.2
## 23 10 6 4 0.6
## 24 10 6 4 0.6
## 25 10 5 5 0.5
## 26 10 4 6 0.4
## 27 10 5 5 0.5
## 28 10 5 5 0.5
## 29 10 6 4 0.6
## 30 10 6 4 0.6
## 31 10 3 7 0.3
## 32 10 3 7 0.3
## 33 10 4 6 0.4
## 34 10 5 5 0.5
## 35 10 7 3 0.7
## 36 10 6 4 0.6
## 37 10 4 6 0.4
## 38 10 3 7 0.3
## 39 10 7 3 0.7
## 40 10 6 4 0.6
## 41 10 6 4 0.6
## 42 10 3 7 0.3
## 43 10 7 3 0.7
## 44 10 9 1 0.9
## 45 10 7 3 0.7
## 46 10 5 5 0.5
## 47 10 4 6 0.4
## 48 10 6 4 0.6
## 49 10 7 3 0.7
## 50 10 8 2 0.8
## 51 10 6 4 0.6
## 52 10 5 5 0.5
## 53 10 7 3 0.7
## 54 10 7 3 0.7
## 55 10 5 5 0.5
## 56 10 6 4 0.6
## 57 10 5 5 0.5
## 58 10 5 5 0.5
## 59 10 7 3 0.7
## 60 10 3 7 0.3
## 61 10 4 6 0.4
## 62 10 6 4 0.6
## 63 10 6 4 0.6
## 64 10 6 4 0.6
## 65 10 5 5 0.5
## 66 10 6 4 0.6
## 67 10 5 5 0.5
## 68 10 4 6 0.4
## 69 10 4 6 0.4
## 70 10 4 6 0.4
## 71 10 4 6 0.4
## 72 10 4 6 0.4
## 73 10 7 3 0.7
## 74 10 3 7 0.3
## 75 10 7 3 0.7
## 76 10 6 4 0.6
## 77 10 6 4 0.6
## 78 10 4 6 0.4
## 79 10 7 3 0.7
## 80 10 4 6 0.4
## 81 10 4 6 0.4
## 82 10 1 9 0.1
## 83 10 7 3 0.7
## 84 10 7 3 0.7
## 85 10 7 3 0.7
## 86 10 3 7 0.3
## 87 10 6 4 0.6
## 88 10 4 6 0.4
## 89 10 7 3 0.7
## 90 10 4 6 0.4
## 91 10 3 7 0.3
## 92 10 4 6 0.4
## 93 10 5 5 0.5
## 94 10 6 4 0.6
## 95 10 6 4 0.6
## 96 10 4 6 0.4
## 97 10 7 3 0.7
## 98 10 5 5 0.5
## 99 10 5 5 0.5
## 100 10 4 6 0.4
## 101 10 6 4 0.6
## 102 10 3 7 0.3
## 103 10 5 5 0.5
## 104 10 6 4 0.6
## 105 10 5 5 0.5
## 106 10 6 4 0.6
## 107 10 2 8 0.2
## 108 10 4 6 0.4
## 109 10 4 6 0.4
## 110 10 2 8 0.2
## 111 10 5 5 0.5
## 112 10 4 6 0.4
## 113 10 5 5 0.5
## 114 10 4 6 0.4
## 115 10 1 9 0.1
## 116 10 5 5 0.5
## 117 10 2 8 0.2
## 118 10 8 2 0.8
## 119 10 4 6 0.4
## 120 10 7 3 0.7
## 121 10 5 5 0.5
## 122 10 7 3 0.7
## 123 10 5 5 0.5
## 124 10 6 4 0.6
## 125 10 4 6 0.4
## 126 10 6 4 0.6
## 127 10 8 2 0.8
## 128 10 2 8 0.2
## 129 10 6 4 0.6
## 130 10 4 6 0.4
## 131 10 6 4 0.6
## 132 10 3 7 0.3
## 133 10 3 7 0.3
## 134 10 5 5 0.5
## 135 10 6 4 0.6
## 136 10 3 7 0.3
## 137 10 7 3 0.7
## 138 10 6 4 0.6
## 139 10 5 5 0.5
## 140 10 5 5 0.5
## 141 10 4 6 0.4
## 142 10 7 3 0.7
## 143 10 3 7 0.3
## 144 10 4 6 0.4
## 145 10 4 6 0.4
## 146 10 6 4 0.6
## 147 10 6 4 0.6
## 148 10 6 4 0.6
## 149 10 7 3 0.7
## 150 10 8 2 0.8
## 151 10 3 7 0.3
## 152 10 3 7 0.3
## 153 10 4 6 0.4
## 154 10 4 6 0.4
## 155 10 3 7 0.3
## 156 10 2 8 0.2
## 157 10 3 7 0.3
## 158 10 7 3 0.7
## 159 10 5 5 0.5
## 160 10 3 7 0.3
## 161 10 4 6 0.4
## 162 10 6 4 0.6
## 163 10 4 6 0.4
## 164 10 5 5 0.5
## 165 10 4 6 0.4
## 166 10 4 6 0.4
## 167 10 3 7 0.3
## 168 10 4 6 0.4
## 169 10 4 6 0.4
## 170 10 4 6 0.4
## 171 10 4 6 0.4
## 172 10 4 6 0.4
## 173 10 7 3 0.7
## 174 10 3 7 0.3
## 175 10 8 2 0.8
## 176 10 5 5 0.5
## 177 10 8 2 0.8
## 178 10 4 6 0.4
## 179 10 5 5 0.5
## 180 10 3 7 0.3
## 181 10 7 3 0.7
## 182 10 5 5 0.5
## 183 10 4 6 0.4
## 184 10 3 7 0.3
## 185 10 6 4 0.6
## 186 10 6 4 0.6
## 187 10 7 3 0.7
## 188 10 3 7 0.3
## 189 10 5 5 0.5
## 190 10 7 3 0.7
## 191 10 4 6 0.4
## 192 10 6 4 0.6
## 193 10 4 6 0.4
## 194 10 5 5 0.5
## 195 10 5 5 0.5
## 196 10 8 2 0.8
## 197 10 9 1 0.9
## 198 10 5 5 0.5
## 199 10 7 3 0.7
## 200 10 5 5 0.5
## 201 10 4 6 0.4
## 202 10 5 5 0.5
## 203 10 3 7 0.3
## 204 10 5 5 0.5
## 205 10 6 4 0.6
## 206 10 3 7 0.3
## 207 10 4 6 0.4
## 208 10 3 7 0.3
## 209 10 4 6 0.4
## 210 10 9 1 0.9
## 211 10 4 6 0.4
## 212 10 5 5 0.5
## 213 10 6 4 0.6
## 214 10 3 7 0.3
## 215 10 5 5 0.5
## 216 10 7 3 0.7
## 217 10 4 6 0.4
## 218 10 6 4 0.6
## 219 10 4 6 0.4
## 220 10 4 6 0.4
## 221 10 4 6 0.4
## 222 10 4 6 0.4
## 223 10 10 0 1.0
## 224 10 4 6 0.4
## 225 10 3 7 0.3
## 226 10 8 2 0.8
## 227 10 7 3 0.7
## 228 10 6 4 0.6
## 229 10 6 4 0.6
## 230 10 4 6 0.4
## 231 10 6 4 0.6
## 232 10 4 6 0.4
## 233 10 6 4 0.6
## 234 10 3 7 0.3
## 235 10 4 6 0.4
## 236 10 4 6 0.4
## 237 10 5 5 0.5
## 238 10 3 7 0.3
## 239 10 4 6 0.4
## 240 10 7 3 0.7
## 241 10 8 2 0.8
## 242 10 6 4 0.6
## 243 10 6 4 0.6
## 244 10 7 3 0.7
## 245 10 6 4 0.6
## 246 10 6 4 0.6
## 247 10 8 2 0.8
## 248 10 4 6 0.4
## 249 10 4 6 0.4
## 250 10 4 6 0.4
## 251 10 4 6 0.4
## 252 10 5 5 0.5
## 253 10 5 5 0.5
## 254 10 3 7 0.3
## 255 10 4 6 0.4
## 256 10 5 5 0.5
## 257 10 6 4 0.6
## 258 10 6 4 0.6
## 259 10 6 4 0.6
## 260 10 8 2 0.8
## 261 10 5 5 0.5
## 262 10 5 5 0.5
## 263 10 1 9 0.1
## 264 10 6 4 0.6
## 265 10 3 7 0.3
## 266 10 4 6 0.4
## 267 10 6 4 0.6
## 268 10 7 3 0.7
## 269 10 7 3 0.7
## 270 10 5 5 0.5
## 271 10 5 5 0.5
## 272 10 5 5 0.5
## 273 10 5 5 0.5
## 274 10 6 4 0.6
## 275 10 5 5 0.5
## 276 10 6 4 0.6
## 277 10 6 4 0.6
## 278 10 5 5 0.5
## 279 10 5 5 0.5
## 280 10 5 5 0.5
## 281 10 10 0 1.0
## 282 10 5 5 0.5
## 283 10 7 3 0.7
## 284 10 4 6 0.4
## 285 10 5 5 0.5
## 286 10 6 4 0.6
## 287 10 6 4 0.6
## 288 10 3 7 0.3
## 289 10 6 4 0.6
## 290 10 5 5 0.5
## 291 10 7 3 0.7
## 292 10 4 6 0.4
## 293 10 4 6 0.4
## 294 10 3 7 0.3
## 295 10 8 2 0.8
## 296 10 2 8 0.2
## 297 10 5 5 0.5
## 298 10 4 6 0.4
## 299 10 7 3 0.7
## 300 10 3 7 0.3
## 301 10 3 7 0.3
## 302 10 6 4 0.6
## 303 10 6 4 0.6
## 304 10 6 4 0.6
## 305 10 4 6 0.4
## 306 10 5 5 0.5
## 307 10 4 6 0.4
## 308 10 5 5 0.5
## 309 10 3 7 0.3
## 310 10 6 4 0.6
## 311 10 6 4 0.6
## 312 10 5 5 0.5
## 313 10 4 6 0.4
## 314 10 3 7 0.3
## 315 10 5 5 0.5
## 316 10 3 7 0.3
## 317 10 4 6 0.4
## 318 10 6 4 0.6
## 319 10 4 6 0.4
## 320 10 2 8 0.2
## 321 10 5 5 0.5
## 322 10 6 4 0.6
## 323 10 4 6 0.4
## 324 10 6 4 0.6
## 325 10 4 6 0.4
## 326 10 4 6 0.4
## 327 10 6 4 0.6
## 328 10 5 5 0.5
## 329 10 7 3 0.7
## 330 10 4 6 0.4
## 331 10 3 7 0.3
## 332 10 4 6 0.4
## 333 10 5 5 0.5
## 334 10 5 5 0.5
## 335 10 6 4 0.6
## 336 10 4 6 0.4
## 337 10 3 7 0.3
## 338 10 6 4 0.6
## 339 10 4 6 0.4
## 340 10 2 8 0.2
## 341 10 7 3 0.7
## 342 10 3 7 0.3
## 343 10 6 4 0.6
## 344 10 4 6 0.4
## 345 10 0 10 0.0
## 346 10 3 7 0.3
## 347 10 6 4 0.6
## 348 10 5 5 0.5
## 349 10 7 3 0.7
## 350 10 3 7 0.3
## 351 10 6 4 0.6
## 352 10 7 3 0.7
## 353 10 6 4 0.6
## 354 10 8 2 0.8
## 355 10 6 4 0.6
## 356 10 4 6 0.4
## 357 10 8 2 0.8
## 358 10 2 8 0.2
## 359 10 4 6 0.4
## 360 10 6 4 0.6
## 361 10 2 8 0.2
## 362 10 4 6 0.4
## 363 10 5 5 0.5
## 364 10 4 6 0.4
## 365 10 7 3 0.7
## 366 10 6 4 0.6
## 367 10 6 4 0.6
## 368 10 2 8 0.2
## 369 10 4 6 0.4
## 370 10 6 4 0.6
## 371 10 2 8 0.2
## 372 10 4 6 0.4
## 373 10 2 8 0.2
## 374 10 4 6 0.4
## 375 10 8 2 0.8
## 376 10 6 4 0.6
## 377 10 6 4 0.6
## 378 10 6 4 0.6
## 379 10 6 4 0.6
## 380 10 6 4 0.6
## 381 10 6 4 0.6
## 382 10 8 2 0.8
## 383 10 4 6 0.4
## 384 10 6 4 0.6
## 385 10 4 6 0.4
## 386 10 3 7 0.3
## 387 10 6 4 0.6
## 388 10 4 6 0.4
## 389 10 6 4 0.6
## 390 10 5 5 0.5
## 391 10 4 6 0.4
## 392 10 6 4 0.6
## 393 10 6 4 0.6
## 394 10 5 5 0.5
## 395 10 4 6 0.4
## 396 10 6 4 0.6
## 397 10 4 6 0.4
## 398 10 7 3 0.7
## 399 10 4 6 0.4
## 400 10 6 4 0.6
## 401 10 3 7 0.3
## 402 10 6 4 0.6
## 403 10 7 3 0.7
## 404 10 4 6 0.4
## 405 10 6 4 0.6
## 406 10 3 7 0.3
## 407 10 7 3 0.7
## 408 10 8 2 0.8
## 409 10 4 6 0.4
## 410 10 6 4 0.6
## 411 10 4 6 0.4
## 412 10 3 7 0.3
## 413 10 4 6 0.4
## 414 10 7 3 0.7
## 415 10 3 7 0.3
## 416 10 5 5 0.5
## 417 10 5 5 0.5
## 418 10 7 3 0.7
## 419 10 6 4 0.6
## 420 10 5 5 0.5
## 421 10 6 4 0.6
## 422 10 3 7 0.3
## 423 10 5 5 0.5
## 424 10 4 6 0.4
## 425 10 5 5 0.5
## 426 10 5 5 0.5
## 427 10 3 7 0.3
## 428 10 6 4 0.6
## 429 10 4 6 0.4
## 430 10 6 4 0.6
## 431 10 7 3 0.7
## 432 10 7 3 0.7
## 433 10 5 5 0.5
## 434 10 4 6 0.4
## 435 10 4 6 0.4
## 436 10 3 7 0.3
## 437 10 4 6 0.4
## 438 10 5 5 0.5
## 439 10 7 3 0.7
## 440 10 5 5 0.5
## 441 10 5 5 0.5
## 442 10 7 3 0.7
## 443 10 8 2 0.8
## 444 10 6 4 0.6
## 445 10 5 5 0.5
## 446 10 4 6 0.4
## 447 10 3 7 0.3
## 448 10 5 5 0.5
## 449 10 6 4 0.6
## 450 10 7 3 0.7
## 451 10 9 1 0.9
## 452 10 5 5 0.5
## 453 10 5 5 0.5
## 454 10 3 7 0.3
## 455 10 5 5 0.5
## 456 10 5 5 0.5
## 457 10 5 5 0.5
## 458 10 3 7 0.3
## 459 10 3 7 0.3
## 460 10 5 5 0.5
## 461 10 4 6 0.4
## 462 10 7 3 0.7
## 463 10 7 3 0.7
## 464 10 3 7 0.3
## 465 10 4 6 0.4
## 466 10 5 5 0.5
## 467 10 5 5 0.5
## 468 10 3 7 0.3
## 469 10 8 2 0.8
## 470 10 5 5 0.5
## 471 10 6 4 0.6
## 472 10 5 5 0.5
## 473 10 7 3 0.7
## 474 10 4 6 0.4
## 475 10 4 6 0.4
## 476 10 5 5 0.5
## 477 10 2 8 0.2
## 478 10 6 4 0.6
## 479 10 6 4 0.6
## 480 10 2 8 0.2
## 481 10 6 4 0.6
## 482 10 5 5 0.5
## 483 10 5 5 0.5
## 484 10 6 4 0.6
## 485 10 4 6 0.4
## 486 10 5 5 0.5
## 487 10 6 4 0.6
## 488 10 3 7 0.3
## 489 10 3 7 0.3
## 490 10 6 4 0.6
## 491 10 4 6 0.4
## 492 10 7 3 0.7
## 493 10 4 6 0.4
## 494 10 6 4 0.6
## 495 10 4 6 0.4
## 496 10 8 2 0.8
## 497 10 5 5 0.5
## 498 10 6 4 0.6
## 499 10 6 4 0.6
## 500 10 4 6 0.4
## 501 10 4 6 0.4
## 502 10 5 5 0.5
## 503 10 3 7 0.3
## 504 10 3 7 0.3
## 505 10 6 4 0.6
## 506 10 5 5 0.5
## 507 10 6 4 0.6
## 508 10 5 5 0.5
## 509 10 5 5 0.5
## 510 10 6 4 0.6
## 511 10 5 5 0.5
## 512 10 4 6 0.4
## 513 10 6 4 0.6
## 514 10 5 5 0.5
## 515 10 5 5 0.5
## 516 10 9 1 0.9
## 517 10 4 6 0.4
## 518 10 2 8 0.2
## 519 10 3 7 0.3
## 520 10 4 6 0.4
## 521 10 2 8 0.2
## 522 10 6 4 0.6
## 523 10 6 4 0.6
## 524 10 7 3 0.7
## 525 10 5 5 0.5
## 526 10 7 3 0.7
## 527 10 7 3 0.7
## 528 10 2 8 0.2
## 529 10 4 6 0.4
## 530 10 8 2 0.8
## 531 10 5 5 0.5
## 532 10 6 4 0.6
## 533 10 8 2 0.8
## 534 10 3 7 0.3
## 535 10 4 6 0.4
## 536 10 6 4 0.6
## 537 10 8 2 0.8
## 538 10 4 6 0.4
## 539 10 4 6 0.4
## 540 10 6 4 0.6
## 541 10 5 5 0.5
## 542 10 4 6 0.4
## 543 10 5 5 0.5
## 544 10 5 5 0.5
## 545 10 3 7 0.3
## 546 10 4 6 0.4
## 547 10 6 4 0.6
## 548 10 4 6 0.4
## 549 10 6 4 0.6
## 550 10 4 6 0.4
## 551 10 6 4 0.6
## 552 10 3 7 0.3
## 553 10 5 5 0.5
## 554 10 6 4 0.6
## 555 10 5 5 0.5
## 556 10 8 2 0.8
## 557 10 2 8 0.2
## 558 10 5 5 0.5
## 559 10 4 6 0.4
## 560 10 5 5 0.5
## 561 10 4 6 0.4
## 562 10 6 4 0.6
## 563 10 6 4 0.6
## 564 10 4 6 0.4
## 565 10 2 8 0.2
## 566 10 3 7 0.3
## 567 10 6 4 0.6
## 568 10 3 7 0.3
## 569 10 5 5 0.5
## 570 10 7 3 0.7
## 571 10 8 2 0.8
## 572 10 6 4 0.6
## 573 10 4 6 0.4
## 574 10 6 4 0.6
## 575 10 3 7 0.3
## 576 10 4 6 0.4
## 577 10 5 5 0.5
## 578 10 7 3 0.7
## 579 10 4 6 0.4
## 580 10 4 6 0.4
## 581 10 2 8 0.2
## 582 10 6 4 0.6
## 583 10 5 5 0.5
## 584 10 5 5 0.5
## 585 10 5 5 0.5
## 586 10 6 4 0.6
## 587 10 6 4 0.6
## 588 10 8 2 0.8
## 589 10 5 5 0.5
## 590 10 8 2 0.8
## 591 10 5 5 0.5
## 592 10 6 4 0.6
## 593 10 7 3 0.7
## 594 10 3 7 0.3
## 595 10 4 6 0.4
## 596 10 2 8 0.2
## 597 10 5 5 0.5
## 598 10 6 4 0.6
## 599 10 6 4 0.6
## 600 10 7 3 0.7
## 601 10 4 6 0.4
## 602 10 6 4 0.6
## 603 10 6 4 0.6
## 604 10 5 5 0.5
## 605 10 5 5 0.5
## 606 10 7 3 0.7
## 607 10 7 3 0.7
## 608 10 6 4 0.6
## 609 10 3 7 0.3
## 610 10 4 6 0.4
## 611 10 9 1 0.9
## 612 10 6 4 0.6
## 613 10 5 5 0.5
## 614 10 4 6 0.4
## 615 10 6 4 0.6
## 616 10 4 6 0.4
## 617 10 7 3 0.7
## 618 10 3 7 0.3
## 619 10 6 4 0.6
## 620 10 5 5 0.5
## 621 10 7 3 0.7
## 622 10 5 5 0.5
## 623 10 5 5 0.5
## 624 10 5 5 0.5
## 625 10 6 4 0.6
## 626 10 3 7 0.3
## 627 10 4 6 0.4
## 628 10 8 2 0.8
## 629 10 6 4 0.6
## 630 10 6 4 0.6
## 631 10 5 5 0.5
## 632 10 3 7 0.3
## 633 10 5 5 0.5
## 634 10 4 6 0.4
## 635 10 6 4 0.6
## 636 10 7 3 0.7
## 637 10 5 5 0.5
## 638 10 4 6 0.4
## 639 10 4 6 0.4
## 640 10 5 5 0.5
## 641 10 3 7 0.3
## 642 10 4 6 0.4
## 643 10 5 5 0.5
## 644 10 7 3 0.7
## 645 10 5 5 0.5
## 646 10 5 5 0.5
## 647 10 5 5 0.5
## 648 10 4 6 0.4
## 649 10 5 5 0.5
## 650 10 7 3 0.7
## 651 10 3 7 0.3
## 652 10 6 4 0.6
## 653 10 6 4 0.6
## 654 10 8 2 0.8
## 655 10 7 3 0.7
## 656 10 4 6 0.4
## 657 10 7 3 0.7
## 658 10 5 5 0.5
## 659 10 7 3 0.7
## 660 10 6 4 0.6
## 661 10 2 8 0.2
## 662 10 8 2 0.8
## 663 10 2 8 0.2
## 664 10 6 4 0.6
## 665 10 4 6 0.4
## 666 10 3 7 0.3
## 667 10 5 5 0.5
## 668 10 6 4 0.6
## 669 10 6 4 0.6
## 670 10 4 6 0.4
## 671 10 7 3 0.7
## 672 10 2 8 0.2
## 673 10 2 8 0.2
## 674 10 6 4 0.6
## 675 10 5 5 0.5
## 676 10 8 2 0.8
## 677 10 5 5 0.5
## 678 10 5 5 0.5
## 679 10 5 5 0.5
## 680 10 5 5 0.5
## 681 10 6 4 0.6
## 682 10 4 6 0.4
## 683 10 2 8 0.2
## 684 10 6 4 0.6
## 685 10 4 6 0.4
## 686 10 5 5 0.5
## 687 10 5 5 0.5
## 688 10 6 4 0.6
## 689 10 6 4 0.6
## 690 10 4 6 0.4
## 691 10 4 6 0.4
## 692 10 4 6 0.4
## 693 10 5 5 0.5
## 694 10 5 5 0.5
## 695 10 5 5 0.5
## 696 10 5 5 0.5
## 697 10 6 4 0.6
## 698 10 6 4 0.6
## 699 10 5 5 0.5
## 700 10 7 3 0.7
## 701 10 2 8 0.2
## 702 10 7 3 0.7
## 703 10 7 3 0.7
## 704 10 1 9 0.1
## 705 10 5 5 0.5
## 706 10 5 5 0.5
## 707 10 4 6 0.4
## 708 10 4 6 0.4
## 709 10 6 4 0.6
## 710 10 3 7 0.3
## 711 10 4 6 0.4
## 712 10 5 5 0.5
## 713 10 8 2 0.8
## 714 10 3 7 0.3
## 715 10 6 4 0.6
## 716 10 5 5 0.5
## 717 10 4 6 0.4
## 718 10 2 8 0.2
## 719 10 3 7 0.3
## 720 10 1 9 0.1
## 721 10 3 7 0.3
## 722 10 6 4 0.6
## 723 10 3 7 0.3
## 724 10 5 5 0.5
## 725 10 5 5 0.5
## 726 10 7 3 0.7
## 727 10 7 3 0.7
## 728 10 3 7 0.3
## 729 10 4 6 0.4
## 730 10 5 5 0.5
## 731 10 7 3 0.7
## 732 10 6 4 0.6
## 733 10 7 3 0.7
## 734 10 8 2 0.8
## 735 10 6 4 0.6
## 736 10 2 8 0.2
## 737 10 6 4 0.6
## 738 10 6 4 0.6
## 739 10 5 5 0.5
## 740 10 4 6 0.4
## 741 10 6 4 0.6
## 742 10 5 5 0.5
## 743 10 5 5 0.5
## 744 10 4 6 0.4
## 745 10 5 5 0.5
## 746 10 4 6 0.4
## 747 10 3 7 0.3
## 748 10 5 5 0.5
## 749 10 6 4 0.6
## 750 10 6 4 0.6
## 751 10 7 3 0.7
## 752 10 4 6 0.4
## 753 10 4 6 0.4
## 754 10 5 5 0.5
## 755 10 6 4 0.6
## 756 10 6 4 0.6
## 757 10 3 7 0.3
## 758 10 5 5 0.5
## 759 10 4 6 0.4
## 760 10 5 5 0.5
## 761 10 5 5 0.5
## 762 10 5 5 0.5
## 763 10 5 5 0.5
## 764 10 4 6 0.4
## 765 10 5 5 0.5
## 766 10 5 5 0.5
## 767 10 5 5 0.5
## 768 10 5 5 0.5
## 769 10 7 3 0.7
## 770 10 3 7 0.3
## 771 10 2 8 0.2
## 772 10 6 4 0.6
## 773 10 8 2 0.8
## 774 10 5 5 0.5
## 775 10 7 3 0.7
## 776 10 6 4 0.6
## 777 10 5 5 0.5
## 778 10 7 3 0.7
## 779 10 3 7 0.3
## 780 10 5 5 0.5
## 781 10 6 4 0.6
## 782 10 3 7 0.3
## 783 10 4 6 0.4
## 784 10 5 5 0.5
## 785 10 5 5 0.5
## 786 10 7 3 0.7
## 787 10 5 5 0.5
## 788 10 5 5 0.5
## 789 10 2 8 0.2
## 790 10 6 4 0.6
## 791 10 5 5 0.5
## 792 10 8 2 0.8
## 793 10 5 5 0.5
## 794 10 4 6 0.4
## 795 10 6 4 0.6
## 796 10 5 5 0.5
## 797 10 7 3 0.7
## 798 10 6 4 0.6
## 799 10 5 5 0.5
## 800 10 5 5 0.5
## 801 10 3 7 0.3
## 802 10 4 6 0.4
## 803 10 3 7 0.3
## 804 10 3 7 0.3
## 805 10 3 7 0.3
## 806 10 5 5 0.5
## 807 10 5 5 0.5
## 808 10 7 3 0.7
## 809 10 4 6 0.4
## 810 10 7 3 0.7
## 811 10 5 5 0.5
## 812 10 5 5 0.5
## 813 10 5 5 0.5
## 814 10 5 5 0.5
## 815 10 5 5 0.5
## 816 10 4 6 0.4
## 817 10 7 3 0.7
## 818 10 4 6 0.4
## 819 10 4 6 0.4
## 820 10 3 7 0.3
## 821 10 6 4 0.6
## 822 10 6 4 0.6
## 823 10 6 4 0.6
## 824 10 8 2 0.8
## 825 10 3 7 0.3
## 826 10 3 7 0.3
## 827 10 6 4 0.6
## 828 10 7 3 0.7
## 829 10 5 5 0.5
## 830 10 3 7 0.3
## 831 10 6 4 0.6
## 832 10 6 4 0.6
## 833 10 5 5 0.5
## 834 10 6 4 0.6
## 835 10 5 5 0.5
## 836 10 8 2 0.8
## 837 10 5 5 0.5
## 838 10 5 5 0.5
## 839 10 3 7 0.3
## 840 10 2 8 0.2
## 841 10 4 6 0.4
## 842 10 6 4 0.6
## 843 10 7 3 0.7
## 844 10 7 3 0.7
## 845 10 3 7 0.3
## 846 10 3 7 0.3
## 847 10 3 7 0.3
## 848 10 4 6 0.4
## 849 10 5 5 0.5
## 850 10 6 4 0.6
## 851 10 4 6 0.4
## 852 10 3 7 0.3
## 853 10 4 6 0.4
## 854 10 5 5 0.5
## 855 10 4 6 0.4
## 856 10 6 4 0.6
## 857 10 6 4 0.6
## 858 10 7 3 0.7
## 859 10 5 5 0.5
## 860 10 5 5 0.5
## 861 10 4 6 0.4
## 862 10 6 4 0.6
## 863 10 4 6 0.4
## 864 10 6 4 0.6
## 865 10 6 4 0.6
## 866 10 6 4 0.6
## 867 10 2 8 0.2
## 868 10 4 6 0.4
## 869 10 3 7 0.3
## 870 10 5 5 0.5
## 871 10 7 3 0.7
## 872 10 5 5 0.5
## 873 10 5 5 0.5
## 874 10 4 6 0.4
## 875 10 6 4 0.6
## 876 10 7 3 0.7
## 877 10 4 6 0.4
## 878 10 3 7 0.3
## 879 10 5 5 0.5
## 880 10 7 3 0.7
## 881 10 6 4 0.6
## 882 10 7 3 0.7
## 883 10 8 2 0.8
## 884 10 6 4 0.6
## 885 10 3 7 0.3
## 886 10 6 4 0.6
## 887 10 4 6 0.4
## 888 10 4 6 0.4
## 889 10 5 5 0.5
## 890 10 5 5 0.5
## 891 10 7 3 0.7
## 892 10 5 5 0.5
## 893 10 7 3 0.7
## 894 10 5 5 0.5
## 895 10 6 4 0.6
## 896 10 3 7 0.3
## 897 10 6 4 0.6
## 898 10 4 6 0.4
## 899 10 4 6 0.4
## 900 10 2 8 0.2
## 901 10 7 3 0.7
## 902 10 7 3 0.7
## 903 10 6 4 0.6
## 904 10 7 3 0.7
## 905 10 4 6 0.4
## 906 10 3 7 0.3
## 907 10 3 7 0.3
## 908 10 3 7 0.3
## 909 10 6 4 0.6
## 910 10 5 5 0.5
## 911 10 5 5 0.5
## 912 10 8 2 0.8
## 913 10 7 3 0.7
## 914 10 5 5 0.5
## 915 10 3 7 0.3
## 916 10 6 4 0.6
## 917 10 3 7 0.3
## 918 10 6 4 0.6
## 919 10 4 6 0.4
## 920 10 8 2 0.8
## 921 10 5 5 0.5
## 922 10 6 4 0.6
## 923 10 2 8 0.2
## 924 10 6 4 0.6
## 925 10 3 7 0.3
## 926 10 5 5 0.5
## 927 10 4 6 0.4
## 928 10 3 7 0.3
## 929 10 6 4 0.6
## 930 10 5 5 0.5
## 931 10 5 5 0.5
## 932 10 4 6 0.4
## 933 10 4 6 0.4
## 934 10 4 6 0.4
## 935 10 7 3 0.7
## 936 10 3 7 0.3
## 937 10 2 8 0.2
## 938 10 5 5 0.5
## 939 10 3 7 0.3
## 940 10 6 4 0.6
## 941 10 5 5 0.5
## 942 10 6 4 0.6
## 943 10 5 5 0.5
## 944 10 4 6 0.4
## 945 10 4 6 0.4
## 946 10 3 7 0.3
## 947 10 3 7 0.3
## 948 10 4 6 0.4
## 949 10 4 6 0.4
## 950 10 5 5 0.5
## 951 10 9 1 0.9
## 952 10 3 7 0.3
## 953 10 7 3 0.7
## 954 10 8 2 0.8
## 955 10 7 3 0.7
## 956 10 6 4 0.6
## 957 10 5 5 0.5
## 958 10 5 5 0.5
## 959 10 7 3 0.7
## 960 10 5 5 0.5
## 961 10 4 6 0.4
## 962 10 5 5 0.5
## 963 10 7 3 0.7
## 964 10 5 5 0.5
## 965 10 4 6 0.4
## 966 10 5 5 0.5
## 967 10 8 2 0.8
## 968 10 5 5 0.5
## 969 10 4 6 0.4
## 970 10 6 4 0.6
## 971 10 6 4 0.6
## 972 10 3 7 0.3
## 973 10 5 5 0.5
## 974 10 4 6 0.4
## 975 10 6 4 0.6
## 976 10 4 6 0.4
## 977 10 4 6 0.4
## 978 10 5 5 0.5
## 979 10 8 2 0.8
## 980 10 5 5 0.5
## 981 10 6 4 0.6
## 982 10 5 5 0.5
## 983 10 4 6 0.4
## 984 10 3 7 0.3
## 985 10 7 3 0.7
## 986 10 6 4 0.6
## 987 10 4 6 0.4
## 988 10 4 6 0.4
## 989 10 4 6 0.4
## 990 10 5 5 0.5
## 991 10 7 3 0.7
## 992 10 2 8 0.2
## 993 10 4 6 0.4
## 994 10 5 5 0.5
## 995 10 5 5 0.5
## 996 10 4 6 0.4
## 997 10 7 3 0.7
## 998 10 4 6 0.4
## 999 10 4 6 0.4
## 1000 10 2 8 0.2
## 1001 10 8 2 0.8
## 1002 10 5 5 0.5
## 1003 10 4 6 0.4
## 1004 10 6 4 0.6
## 1005 10 5 5 0.5
## 1006 10 3 7 0.3
## 1007 10 7 3 0.7
## 1008 10 5 5 0.5
## 1009 10 6 4 0.6
## 1010 10 5 5 0.5
## 1011 10 6 4 0.6
## 1012 10 7 3 0.7
## 1013 10 4 6 0.4
## 1014 10 3 7 0.3
## 1015 10 7 3 0.7
## 1016 10 5 5 0.5
## 1017 10 7 3 0.7
## 1018 10 8 2 0.8
## 1019 10 5 5 0.5
## 1020 10 6 4 0.6
## 1021 10 4 6 0.4
## 1022 10 6 4 0.6
## 1023 10 7 3 0.7
## 1024 10 5 5 0.5
## 1025 10 6 4 0.6
## 1026 10 5 5 0.5
## 1027 10 4 6 0.4
## 1028 10 5 5 0.5
## 1029 10 6 4 0.6
## 1030 10 3 7 0.3
## 1031 10 4 6 0.4
## 1032 10 5 5 0.5
## 1033 10 3 7 0.3
## 1034 10 6 4 0.6
## 1035 10 5 5 0.5
## 1036 10 5 5 0.5
## 1037 10 4 6 0.4
## 1038 10 5 5 0.5
## 1039 10 4 6 0.4
## 1040 10 7 3 0.7
## 1041 10 5 5 0.5
## 1042 10 6 4 0.6
## 1043 10 4 6 0.4
## 1044 10 9 1 0.9
## 1045 10 4 6 0.4
## 1046 10 6 4 0.6
## 1047 10 6 4 0.6
## 1048 10 5 5 0.5
## 1049 10 3 7 0.3
## 1050 10 8 2 0.8
## 1051 10 4 6 0.4
## 1052 10 6 4 0.6
## 1053 10 6 4 0.6
## 1054 10 7 3 0.7
## 1055 10 5 5 0.5
## 1056 10 5 5 0.5
## 1057 10 6 4 0.6
## 1058 10 5 5 0.5
## 1059 10 7 3 0.7
## 1060 10 7 3 0.7
## 1061 10 3 7 0.3
## 1062 10 4 6 0.4
## 1063 10 8 2 0.8
## 1064 10 5 5 0.5
## 1065 10 7 3 0.7
## 1066 10 6 4 0.6
## 1067 10 6 4 0.6
## 1068 10 4 6 0.4
## 1069 10 6 4 0.6
## 1070 10 5 5 0.5
## 1071 10 6 4 0.6
## 1072 10 6 4 0.6
## 1073 10 4 6 0.4
## 1074 10 5 5 0.5
## 1075 10 4 6 0.4
## 1076 10 4 6 0.4
## 1077 10 5 5 0.5
## 1078 10 6 4 0.6
## 1079 10 6 4 0.6
## 1080 10 4 6 0.4
## 1081 10 7 3 0.7
## 1082 10 3 7 0.3
## 1083 10 3 7 0.3
## 1084 10 3 7 0.3
## 1085 10 2 8 0.2
## 1086 10 4 6 0.4
## 1087 10 4 6 0.4
## 1088 10 4 6 0.4
## 1089 10 9 1 0.9
## 1090 10 7 3 0.7
## 1091 10 8 2 0.8
## 1092 10 6 4 0.6
## 1093 10 4 6 0.4
## 1094 10 4 6 0.4
## 1095 10 5 5 0.5
## 1096 10 4 6 0.4
## 1097 10 7 3 0.7
## 1098 10 5 5 0.5
## 1099 10 8 2 0.8
## 1100 10 3 7 0.3
## 1101 10 3 7 0.3
## 1102 10 6 4 0.6
## 1103 10 7 3 0.7
## 1104 10 6 4 0.6
## 1105 10 5 5 0.5
## 1106 10 5 5 0.5
## 1107 10 6 4 0.6
## 1108 10 8 2 0.8
## 1109 10 5 5 0.5
## 1110 10 7 3 0.7
## 1111 10 7 3 0.7
## 1112 10 5 5 0.5
## 1113 10 3 7 0.3
## 1114 10 5 5 0.5
## 1115 10 4 6 0.4
## 1116 10 3 7 0.3
## 1117 10 5 5 0.5
## 1118 10 4 6 0.4
## 1119 10 4 6 0.4
## 1120 10 2 8 0.2
## 1121 10 7 3 0.7
## 1122 10 5 5 0.5
## 1123 10 8 2 0.8
## 1124 10 6 4 0.6
## 1125 10 5 5 0.5
## 1126 10 6 4 0.6
## 1127 10 5 5 0.5
## 1128 10 4 6 0.4
## 1129 10 5 5 0.5
## 1130 10 7 3 0.7
## 1131 10 5 5 0.5
## 1132 10 4 6 0.4
## 1133 10 4 6 0.4
## 1134 10 6 4 0.6
## 1135 10 5 5 0.5
## 1136 10 6 4 0.6
## 1137 10 5 5 0.5
## 1138 10 4 6 0.4
## 1139 10 3 7 0.3
## 1140 10 6 4 0.6
## 1141 10 6 4 0.6
## 1142 10 4 6 0.4
## 1143 10 4 6 0.4
## 1144 10 2 8 0.2
## 1145 10 2 8 0.2
## 1146 10 8 2 0.8
## 1147 10 5 5 0.5
## 1148 10 4 6 0.4
## 1149 10 4 6 0.4
## 1150 10 5 5 0.5
## 1151 10 5 5 0.5
## 1152 10 5 5 0.5
## 1153 10 6 4 0.6
## 1154 10 6 4 0.6
## 1155 10 7 3 0.7
## 1156 10 4 6 0.4
## 1157 10 3 7 0.3
## 1158 10 7 3 0.7
## 1159 10 4 6 0.4
## 1160 10 5 5 0.5
## 1161 10 5 5 0.5
## 1162 10 5 5 0.5
## 1163 10 7 3 0.7
## 1164 10 6 4 0.6
## 1165 10 5 5 0.5
## 1166 10 4 6 0.4
## 1167 10 7 3 0.7
## 1168 10 6 4 0.6
## 1169 10 7 3 0.7
## 1170 10 5 5 0.5
## 1171 10 6 4 0.6
## 1172 10 6 4 0.6
## 1173 10 7 3 0.7
## 1174 10 4 6 0.4
## 1175 10 7 3 0.7
## 1176 10 7 3 0.7
## 1177 10 3 7 0.3
## 1178 10 6 4 0.6
## 1179 10 5 5 0.5
## 1180 10 5 5 0.5
## 1181 10 5 5 0.5
## 1182 10 6 4 0.6
## 1183 10 2 8 0.2
## 1184 10 5 5 0.5
## 1185 10 2 8 0.2
## 1186 10 6 4 0.6
## 1187 10 6 4 0.6
## 1188 10 3 7 0.3
## 1189 10 4 6 0.4
## 1190 10 4 6 0.4
## 1191 10 4 6 0.4
## 1192 10 6 4 0.6
## 1193 10 7 3 0.7
## 1194 10 3 7 0.3
## 1195 10 3 7 0.3
## 1196 10 3 7 0.3
## 1197 10 4 6 0.4
## 1198 10 3 7 0.3
## 1199 10 1 9 0.1
## 1200 10 6 4 0.6
## 1201 10 7 3 0.7
## 1202 10 2 8 0.2
## 1203 10 4 6 0.4
## 1204 10 5 5 0.5
## 1205 10 6 4 0.6
## 1206 10 4 6 0.4
## 1207 10 4 6 0.4
## 1208 10 5 5 0.5
## 1209 10 6 4 0.6
## 1210 10 3 7 0.3
## 1211 10 2 8 0.2
## 1212 10 3 7 0.3
## 1213 10 3 7 0.3
## 1214 10 4 6 0.4
## 1215 10 5 5 0.5
## 1216 10 5 5 0.5
## 1217 10 6 4 0.6
## 1218 10 6 4 0.6
## 1219 10 4 6 0.4
## 1220 10 3 7 0.3
## 1221 10 5 5 0.5
## 1222 10 5 5 0.5
## 1223 10 4 6 0.4
## 1224 10 7 3 0.7
## 1225 10 5 5 0.5
## 1226 10 4 6 0.4
## 1227 10 5 5 0.5
## 1228 10 5 5 0.5
## 1229 10 3 7 0.3
## 1230 10 6 4 0.6
## 1231 10 5 5 0.5
## 1232 10 5 5 0.5
## 1233 10 5 5 0.5
## 1234 10 6 4 0.6
## 1235 10 4 6 0.4
## 1236 10 5 5 0.5
## 1237 10 4 6 0.4
## 1238 10 6 4 0.6
## 1239 10 6 4 0.6
## 1240 10 7 3 0.7
## 1241 10 8 2 0.8
## 1242 10 6 4 0.6
## 1243 10 6 4 0.6
## 1244 10 5 5 0.5
## 1245 10 4 6 0.4
## 1246 10 6 4 0.6
## 1247 10 4 6 0.4
## 1248 10 8 2 0.8
## 1249 10 2 8 0.2
## 1250 10 5 5 0.5
## 1251 10 4 6 0.4
## 1252 10 6 4 0.6
## 1253 10 6 4 0.6
## 1254 10 4 6 0.4
## 1255 10 2 8 0.2
## 1256 10 7 3 0.7
## 1257 10 5 5 0.5
## 1258 10 7 3 0.7
## 1259 10 5 5 0.5
## 1260 10 6 4 0.6
## 1261 10 6 4 0.6
## 1262 10 5 5 0.5
## 1263 10 6 4 0.6
## 1264 10 4 6 0.4
## 1265 10 7 3 0.7
## 1266 10 4 6 0.4
## 1267 10 3 7 0.3
## 1268 10 4 6 0.4
## 1269 10 5 5 0.5
## 1270 10 3 7 0.3
## 1271 10 5 5 0.5
## 1272 10 4 6 0.4
## 1273 10 7 3 0.7
## 1274 10 5 5 0.5
## 1275 10 4 6 0.4
## 1276 10 8 2 0.8
## 1277 10 5 5 0.5
## 1278 10 4 6 0.4
## 1279 10 3 7 0.3
## 1280 10 4 6 0.4
## 1281 10 5 5 0.5
## 1282 10 5 5 0.5
## 1283 10 4 6 0.4
## 1284 10 7 3 0.7
## 1285 10 4 6 0.4
## 1286 10 3 7 0.3
## 1287 10 4 6 0.4
## 1288 10 4 6 0.4
## 1289 10 5 5 0.5
## 1290 10 3 7 0.3
## 1291 10 7 3 0.7
## 1292 10 6 4 0.6
## 1293 10 5 5 0.5
## 1294 10 5 5 0.5
## 1295 10 7 3 0.7
## 1296 10 2 8 0.2
## 1297 10 4 6 0.4
## 1298 10 2 8 0.2
## 1299 10 4 6 0.4
## 1300 10 6 4 0.6
## 1301 10 4 6 0.4
## 1302 10 6 4 0.6
## 1303 10 5 5 0.5
## 1304 10 9 1 0.9
## 1305 10 5 5 0.5
## 1306 10 5 5 0.5
## 1307 10 5 5 0.5
## 1308 10 5 5 0.5
## 1309 10 6 4 0.6
## 1310 10 1 9 0.1
## 1311 10 6 4 0.6
## 1312 10 2 8 0.2
## 1313 10 6 4 0.6
## 1314 10 6 4 0.6
## 1315 10 7 3 0.7
## 1316 10 9 1 0.9
## 1317 10 5 5 0.5
## 1318 10 4 6 0.4
## 1319 10 6 4 0.6
## 1320 10 3 7 0.3
## 1321 10 4 6 0.4
## 1322 10 3 7 0.3
## 1323 10 6 4 0.6
## 1324 10 6 4 0.6
## 1325 10 6 4 0.6
## 1326 10 4 6 0.4
## 1327 10 6 4 0.6
## 1328 10 6 4 0.6
## 1329 10 5 5 0.5
## 1330 10 5 5 0.5
## 1331 10 3 7 0.3
## 1332 10 6 4 0.6
## 1333 10 2 8 0.2
## 1334 10 4 6 0.4
## 1335 10 8 2 0.8
## 1336 10 3 7 0.3
## 1337 10 4 6 0.4
## 1338 10 5 5 0.5
## 1339 10 4 6 0.4
## 1340 10 7 3 0.7
## 1341 10 3 7 0.3
## 1342 10 3 7 0.3
## 1343 10 7 3 0.7
## 1344 10 7 3 0.7
## 1345 10 4 6 0.4
## 1346 10 3 7 0.3
## 1347 10 7 3 0.7
## 1348 10 3 7 0.3
## 1349 10 4 6 0.4
## 1350 10 4 6 0.4
## 1351 10 7 3 0.7
## 1352 10 5 5 0.5
## 1353 10 6 4 0.6
## 1354 10 8 2 0.8
## 1355 10 3 7 0.3
## 1356 10 7 3 0.7
## 1357 10 4 6 0.4
## 1358 10 4 6 0.4
## 1359 10 4 6 0.4
## 1360 10 3 7 0.3
## 1361 10 4 6 0.4
## 1362 10 7 3 0.7
## 1363 10 7 3 0.7
## 1364 10 9 1 0.9
## 1365 10 5 5 0.5
## 1366 10 8 2 0.8
## 1367 10 5 5 0.5
## 1368 10 7 3 0.7
## 1369 10 3 7 0.3
## 1370 10 8 2 0.8
## 1371 10 9 1 0.9
## 1372 10 5 5 0.5
## 1373 10 6 4 0.6
## 1374 10 6 4 0.6
## 1375 10 8 2 0.8
## 1376 10 6 4 0.6
## 1377 10 3 7 0.3
## 1378 10 3 7 0.3
## 1379 10 5 5 0.5
## 1380 10 6 4 0.6
## 1381 10 4 6 0.4
## 1382 10 7 3 0.7
## 1383 10 8 2 0.8
## 1384 10 7 3 0.7
## 1385 10 5 5 0.5
## 1386 10 5 5 0.5
## 1387 10 6 4 0.6
## 1388 10 4 6 0.4
## 1389 10 6 4 0.6
## 1390 10 6 4 0.6
## 1391 10 6 4 0.6
## 1392 10 3 7 0.3
## 1393 10 5 5 0.5
## 1394 10 4 6 0.4
## 1395 10 2 8 0.2
## 1396 10 5 5 0.5
## 1397 10 4 6 0.4
## 1398 10 6 4 0.6
## 1399 10 3 7 0.3
## 1400 10 6 4 0.6
## 1401 10 6 4 0.6
## 1402 10 3 7 0.3
## 1403 10 4 6 0.4
## 1404 10 6 4 0.6
## 1405 10 5 5 0.5
## 1406 10 6 4 0.6
## 1407 10 6 4 0.6
## 1408 10 4 6 0.4
## 1409 10 4 6 0.4
## 1410 10 6 4 0.6
## 1411 10 4 6 0.4
## 1412 10 7 3 0.7
## 1413 10 5 5 0.5
## 1414 10 6 4 0.6
## 1415 10 5 5 0.5
## 1416 10 4 6 0.4
## 1417 10 7 3 0.7
## 1418 10 7 3 0.7
## 1419 10 6 4 0.6
## 1420 10 3 7 0.3
## 1421 10 6 4 0.6
## 1422 10 3 7 0.3
## 1423 10 6 4 0.6
## 1424 10 8 2 0.8
## 1425 10 5 5 0.5
## 1426 10 6 4 0.6
## 1427 10 3 7 0.3
## 1428 10 8 2 0.8
## 1429 10 5 5 0.5
## 1430 10 4 6 0.4
## 1431 10 6 4 0.6
## 1432 10 6 4 0.6
## 1433 10 6 4 0.6
## 1434 10 3 7 0.3
## 1435 10 7 3 0.7
## 1436 10 5 5 0.5
## 1437 10 5 5 0.5
## 1438 10 3 7 0.3
## 1439 10 6 4 0.6
## 1440 10 4 6 0.4
## 1441 10 5 5 0.5
## 1442 10 7 3 0.7
## 1443 10 4 6 0.4
## 1444 10 6 4 0.6
## 1445 10 4 6 0.4
## 1446 10 7 3 0.7
## 1447 10 6 4 0.6
## 1448 10 3 7 0.3
## 1449 10 4 6 0.4
## 1450 10 6 4 0.6
## 1451 10 5 5 0.5
## 1452 10 5 5 0.5
## 1453 10 8 2 0.8
## 1454 10 6 4 0.6
## 1455 10 5 5 0.5
## 1456 10 4 6 0.4
## 1457 10 7 3 0.7
## 1458 10 7 3 0.7
## 1459 10 5 5 0.5
## 1460 10 4 6 0.4
## 1461 10 5 5 0.5
## 1462 10 7 3 0.7
## 1463 10 3 7 0.3
## 1464 10 6 4 0.6
## 1465 10 5 5 0.5
## 1466 10 5 5 0.5
## 1467 10 4 6 0.4
## 1468 10 2 8 0.2
## 1469 10 4 6 0.4
## 1470 10 6 4 0.6
## 1471 10 6 4 0.6
## 1472 10 7 3 0.7
## 1473 10 5 5 0.5
## 1474 10 6 4 0.6
## 1475 10 3 7 0.3
## 1476 10 6 4 0.6
## 1477 10 7 3 0.7
## 1478 10 6 4 0.6
## 1479 10 5 5 0.5
## 1480 10 9 1 0.9
## 1481 10 7 3 0.7
## 1482 10 6 4 0.6
## 1483 10 6 4 0.6
## 1484 10 5 5 0.5
## 1485 10 3 7 0.3
## 1486 10 4 6 0.4
## 1487 10 6 4 0.6
## 1488 10 6 4 0.6
## 1489 10 3 7 0.3
## 1490 10 6 4 0.6
## 1491 10 5 5 0.5
## 1492 10 6 4 0.6
## 1493 10 4 6 0.4
## 1494 10 5 5 0.5
## 1495 10 3 7 0.3
## 1496 10 7 3 0.7
## 1497 10 5 5 0.5
## 1498 10 6 4 0.6
## 1499 10 5 5 0.5
## 1500 10 0 10 0.0
## 1501 10 4 6 0.4
## 1502 10 3 7 0.3
## 1503 10 6 4 0.6
## 1504 10 4 6 0.4
## 1505 10 5 5 0.5
## 1506 10 6 4 0.6
## 1507 10 3 7 0.3
## 1508 10 4 6 0.4
## 1509 10 4 6 0.4
## 1510 10 6 4 0.6
## 1511 10 5 5 0.5
## 1512 10 4 6 0.4
## 1513 10 4 6 0.4
## 1514 10 3 7 0.3
## 1515 10 2 8 0.2
## 1516 10 1 9 0.1
## 1517 10 3 7 0.3
## 1518 10 8 2 0.8
## 1519 10 4 6 0.4
## 1520 10 6 4 0.6
## 1521 10 7 3 0.7
## 1522 10 5 5 0.5
## 1523 10 2 8 0.2
## 1524 10 4 6 0.4
## 1525 10 5 5 0.5
## 1526 10 6 4 0.6
## 1527 10 5 5 0.5
## 1528 10 6 4 0.6
## 1529 10 6 4 0.6
## 1530 10 7 3 0.7
## 1531 10 7 3 0.7
## 1532 10 3 7 0.3
## 1533 10 7 3 0.7
## 1534 10 5 5 0.5
## 1535 10 3 7 0.3
## 1536 10 5 5 0.5
## 1537 10 3 7 0.3
## 1538 10 2 8 0.2
## 1539 10 4 6 0.4
## 1540 10 3 7 0.3
## 1541 10 4 6 0.4
## 1542 10 3 7 0.3
## 1543 10 6 4 0.6
## 1544 10 3 7 0.3
## 1545 10 5 5 0.5
## 1546 10 8 2 0.8
## 1547 10 6 4 0.6
## 1548 10 5 5 0.5
## 1549 10 5 5 0.5
## 1550 10 3 7 0.3
## 1551 10 6 4 0.6
## 1552 10 6 4 0.6
## 1553 10 2 8 0.2
## 1554 10 5 5 0.5
## 1555 10 5 5 0.5
## 1556 10 2 8 0.2
## 1557 10 7 3 0.7
## 1558 10 6 4 0.6
## 1559 10 4 6 0.4
## 1560 10 7 3 0.7
## 1561 10 7 3 0.7
## 1562 10 4 6 0.4
## 1563 10 4 6 0.4
## 1564 10 6 4 0.6
## 1565 10 4 6 0.4
## 1566 10 6 4 0.6
## 1567 10 4 6 0.4
## 1568 10 6 4 0.6
## 1569 10 6 4 0.6
## 1570 10 5 5 0.5
## 1571 10 6 4 0.6
## 1572 10 6 4 0.6
## 1573 10 4 6 0.4
## 1574 10 4 6 0.4
## 1575 10 6 4 0.6
## 1576 10 9 1 0.9
## 1577 10 4 6 0.4
## 1578 10 6 4 0.6
## 1579 10 4 6 0.4
## 1580 10 4 6 0.4
## 1581 10 5 5 0.5
## 1582 10 2 8 0.2
## 1583 10 6 4 0.6
## 1584 10 4 6 0.4
## 1585 10 8 2 0.8
## 1586 10 8 2 0.8
## 1587 10 4 6 0.4
## 1588 10 3 7 0.3
## 1589 10 6 4 0.6
## 1590 10 4 6 0.4
## 1591 10 4 6 0.4
## 1592 10 6 4 0.6
## 1593 10 4 6 0.4
## 1594 10 3 7 0.3
## 1595 10 4 6 0.4
## 1596 10 7 3 0.7
## 1597 10 5 5 0.5
## 1598 10 4 6 0.4
## 1599 10 8 2 0.8
## 1600 10 6 4 0.6
## 1601 10 7 3 0.7
## 1602 10 5 5 0.5
## 1603 10 5 5 0.5
## 1604 10 3 7 0.3
## 1605 10 5 5 0.5
## 1606 10 5 5 0.5
## 1607 10 4 6 0.4
## 1608 10 7 3 0.7
## 1609 10 4 6 0.4
## 1610 10 5 5 0.5
## 1611 10 6 4 0.6
## 1612 10 4 6 0.4
## 1613 10 6 4 0.6
## 1614 10 3 7 0.3
## 1615 10 7 3 0.7
## 1616 10 6 4 0.6
## 1617 10 5 5 0.5
## 1618 10 3 7 0.3
## 1619 10 6 4 0.6
## 1620 10 9 1 0.9
## 1621 10 6 4 0.6
## 1622 10 7 3 0.7
## 1623 10 8 2 0.8
## 1624 10 5 5 0.5
## 1625 10 4 6 0.4
## 1626 10 3 7 0.3
## 1627 10 3 7 0.3
## 1628 10 4 6 0.4
## 1629 10 8 2 0.8
## 1630 10 6 4 0.6
## 1631 10 5 5 0.5
## 1632 10 5 5 0.5
## 1633 10 5 5 0.5
## 1634 10 5 5 0.5
## 1635 10 4 6 0.4
## 1636 10 8 2 0.8
## 1637 10 6 4 0.6
## 1638 10 4 6 0.4
## 1639 10 6 4 0.6
## 1640 10 7 3 0.7
## 1641 10 4 6 0.4
## 1642 10 7 3 0.7
## 1643 10 5 5 0.5
## 1644 10 6 4 0.6
## 1645 10 3 7 0.3
## 1646 10 6 4 0.6
## 1647 10 4 6 0.4
## 1648 10 3 7 0.3
## 1649 10 4 6 0.4
## 1650 10 4 6 0.4
## 1651 10 6 4 0.6
## 1652 10 3 7 0.3
## 1653 10 6 4 0.6
## 1654 10 8 2 0.8
## 1655 10 4 6 0.4
## 1656 10 4 6 0.4
## 1657 10 5 5 0.5
## 1658 10 6 4 0.6
## 1659 10 3 7 0.3
## 1660 10 5 5 0.5
## 1661 10 5 5 0.5
## 1662 10 5 5 0.5
## 1663 10 3 7 0.3
## 1664 10 8 2 0.8
## 1665 10 5 5 0.5
## 1666 10 6 4 0.6
## 1667 10 5 5 0.5
## 1668 10 4 6 0.4
## 1669 10 7 3 0.7
## 1670 10 4 6 0.4
## 1671 10 5 5 0.5
## 1672 10 3 7 0.3
## 1673 10 3 7 0.3
## 1674 10 3 7 0.3
## 1675 10 6 4 0.6
## 1676 10 3 7 0.3
## 1677 10 6 4 0.6
## 1678 10 4 6 0.4
## 1679 10 8 2 0.8
## 1680 10 4 6 0.4
## 1681 10 6 4 0.6
## 1682 10 4 6 0.4
## 1683 10 6 4 0.6
## 1684 10 6 4 0.6
## 1685 10 4 6 0.4
## 1686 10 6 4 0.6
## 1687 10 7 3 0.7
## 1688 10 6 4 0.6
## 1689 10 5 5 0.5
## 1690 10 5 5 0.5
## 1691 10 6 4 0.6
## 1692 10 6 4 0.6
## 1693 10 7 3 0.7
## 1694 10 5 5 0.5
## 1695 10 6 4 0.6
## 1696 10 5 5 0.5
## 1697 10 5 5 0.5
## 1698 10 5 5 0.5
## 1699 10 3 7 0.3
## 1700 10 7 3 0.7
## 1701 10 6 4 0.6
## 1702 10 5 5 0.5
## 1703 10 4 6 0.4
## 1704 10 5 5 0.5
## 1705 10 8 2 0.8
## 1706 10 3 7 0.3
## 1707 10 7 3 0.7
## 1708 10 5 5 0.5
## 1709 10 4 6 0.4
## 1710 10 4 6 0.4
## 1711 10 6 4 0.6
## 1712 10 6 4 0.6
## 1713 10 6 4 0.6
## 1714 10 6 4 0.6
## 1715 10 5 5 0.5
## 1716 10 7 3 0.7
## 1717 10 3 7 0.3
## 1718 10 7 3 0.7
## 1719 10 4 6 0.4
## 1720 10 6 4 0.6
## 1721 10 5 5 0.5
## 1722 10 1 9 0.1
## 1723 10 6 4 0.6
## 1724 10 1 9 0.1
## 1725 10 5 5 0.5
## 1726 10 4 6 0.4
## 1727 10 5 5 0.5
## 1728 10 4 6 0.4
## 1729 10 5 5 0.5
## 1730 10 6 4 0.6
## 1731 10 6 4 0.6
## 1732 10 5 5 0.5
## 1733 10 5 5 0.5
## 1734 10 4 6 0.4
## 1735 10 5 5 0.5
## 1736 10 5 5 0.5
## 1737 10 3 7 0.3
## 1738 10 5 5 0.5
## 1739 10 5 5 0.5
## 1740 10 7 3 0.7
## 1741 10 4 6 0.4
## 1742 10 4 6 0.4
## 1743 10 5 5 0.5
## 1744 10 4 6 0.4
## 1745 10 2 8 0.2
## 1746 10 8 2 0.8
## 1747 10 5 5 0.5
## 1748 10 4 6 0.4
## 1749 10 6 4 0.6
## 1750 10 6 4 0.6
## 1751 10 7 3 0.7
## 1752 10 5 5 0.5
## 1753 10 4 6 0.4
## 1754 10 4 6 0.4
## 1755 10 5 5 0.5
## 1756 10 2 8 0.2
## 1757 10 7 3 0.7
## 1758 10 2 8 0.2
## 1759 10 4 6 0.4
## 1760 10 5 5 0.5
## 1761 10 6 4 0.6
## 1762 10 5 5 0.5
## 1763 10 3 7 0.3
## 1764 10 5 5 0.5
## 1765 10 8 2 0.8
## 1766 10 5 5 0.5
## 1767 10 6 4 0.6
## 1768 10 4 6 0.4
## 1769 10 7 3 0.7
## 1770 10 6 4 0.6
## 1771 10 5 5 0.5
## 1772 10 4 6 0.4
## 1773 10 5 5 0.5
## 1774 10 6 4 0.6
## 1775 10 6 4 0.6
## 1776 10 3 7 0.3
## 1777 10 3 7 0.3
## 1778 10 4 6 0.4
## 1779 10 3 7 0.3
## 1780 10 5 5 0.5
## 1781 10 6 4 0.6
## 1782 10 5 5 0.5
## 1783 10 5 5 0.5
## 1784 10 4 6 0.4
## 1785 10 3 7 0.3
## 1786 10 6 4 0.6
## 1787 10 5 5 0.5
## 1788 10 7 3 0.7
## 1789 10 2 8 0.2
## 1790 10 4 6 0.4
## 1791 10 5 5 0.5
## 1792 10 5 5 0.5
## 1793 10 5 5 0.5
## 1794 10 6 4 0.6
## 1795 10 7 3 0.7
## 1796 10 5 5 0.5
## 1797 10 6 4 0.6
## 1798 10 4 6 0.4
## 1799 10 5 5 0.5
## 1800 10 6 4 0.6
## 1801 10 6 4 0.6
## 1802 10 6 4 0.6
## 1803 10 2 8 0.2
## 1804 10 4 6 0.4
## 1805 10 5 5 0.5
## 1806 10 5 5 0.5
## 1807 10 7 3 0.7
## 1808 10 2 8 0.2
## 1809 10 5 5 0.5
## 1810 10 6 4 0.6
## 1811 10 5 5 0.5
## 1812 10 4 6 0.4
## 1813 10 5 5 0.5
## 1814 10 4 6 0.4
## 1815 10 4 6 0.4
## 1816 10 7 3 0.7
## 1817 10 7 3 0.7
## 1818 10 8 2 0.8
## 1819 10 3 7 0.3
## 1820 10 5 5 0.5
## 1821 10 4 6 0.4
## 1822 10 6 4 0.6
## 1823 10 6 4 0.6
## 1824 10 6 4 0.6
## 1825 10 5 5 0.5
## 1826 10 5 5 0.5
## 1827 10 5 5 0.5
## 1828 10 5 5 0.5
## 1829 10 7 3 0.7
## 1830 10 4 6 0.4
## 1831 10 4 6 0.4
## 1832 10 6 4 0.6
## 1833 10 4 6 0.4
## 1834 10 3 7 0.3
## 1835 10 5 5 0.5
## 1836 10 7 3 0.7
## 1837 10 6 4 0.6
## 1838 10 7 3 0.7
## 1839 10 4 6 0.4
## 1840 10 6 4 0.6
## 1841 10 6 4 0.6
## 1842 10 8 2 0.8
## 1843 10 4 6 0.4
## 1844 10 6 4 0.6
## 1845 10 3 7 0.3
## 1846 10 2 8 0.2
## 1847 10 4 6 0.4
## 1848 10 5 5 0.5
## 1849 10 3 7 0.3
## 1850 10 6 4 0.6
## 1851 10 5 5 0.5
## 1852 10 9 1 0.9
## 1853 10 1 9 0.1
## 1854 10 6 4 0.6
## 1855 10 7 3 0.7
## 1856 10 5 5 0.5
## 1857 10 9 1 0.9
## 1858 10 8 2 0.8
## 1859 10 6 4 0.6
## 1860 10 5 5 0.5
## 1861 10 4 6 0.4
## 1862 10 5 5 0.5
## 1863 10 4 6 0.4
## 1864 10 8 2 0.8
## 1865 10 4 6 0.4
## 1866 10 6 4 0.6
## 1867 10 3 7 0.3
## 1868 10 7 3 0.7
## 1869 10 5 5 0.5
## 1870 10 7 3 0.7
## 1871 10 7 3 0.7
## 1872 10 9 1 0.9
## 1873 10 4 6 0.4
## 1874 10 7 3 0.7
## 1875 10 6 4 0.6
## 1876 10 7 3 0.7
## 1877 10 7 3 0.7
## 1878 10 5 5 0.5
## 1879 10 6 4 0.6
## 1880 10 6 4 0.6
## 1881 10 4 6 0.4
## 1882 10 5 5 0.5
## 1883 10 5 5 0.5
## 1884 10 4 6 0.4
## 1885 10 5 5 0.5
## 1886 10 6 4 0.6
## 1887 10 5 5 0.5
## 1888 10 3 7 0.3
## 1889 10 6 4 0.6
## 1890 10 2 8 0.2
## 1891 10 4 6 0.4
## 1892 10 6 4 0.6
## 1893 10 4 6 0.4
## 1894 10 6 4 0.6
## 1895 10 4 6 0.4
## 1896 10 4 6 0.4
## 1897 10 4 6 0.4
## 1898 10 6 4 0.6
## 1899 10 5 5 0.5
## 1900 10 7 3 0.7
## 1901 10 4 6 0.4
## 1902 10 3 7 0.3
## 1903 10 6 4 0.6
## 1904 10 6 4 0.6
## 1905 10 2 8 0.2
## 1906 10 5 5 0.5
## 1907 10 3 7 0.3
## 1908 10 4 6 0.4
## 1909 10 5 5 0.5
## 1910 10 4 6 0.4
## 1911 10 5 5 0.5
## 1912 10 6 4 0.6
## 1913 10 8 2 0.8
## 1914 10 7 3 0.7
## 1915 10 3 7 0.3
## 1916 10 4 6 0.4
## 1917 10 4 6 0.4
## 1918 10 4 6 0.4
## 1919 10 4 6 0.4
## 1920 10 4 6 0.4
## 1921 10 4 6 0.4
## 1922 10 3 7 0.3
## 1923 10 5 5 0.5
## 1924 10 4 6 0.4
## 1925 10 8 2 0.8
## 1926 10 5 5 0.5
## 1927 10 5 5 0.5
## 1928 10 3 7 0.3
## 1929 10 6 4 0.6
## 1930 10 7 3 0.7
## 1931 10 4 6 0.4
## 1932 10 5 5 0.5
## 1933 10 4 6 0.4
## 1934 10 3 7 0.3
## 1935 10 6 4 0.6
## 1936 10 7 3 0.7
## 1937 10 5 5 0.5
## 1938 10 5 5 0.5
## 1939 10 5 5 0.5
## 1940 10 5 5 0.5
## 1941 10 3 7 0.3
## 1942 10 4 6 0.4
## 1943 10 3 7 0.3
## 1944 10 7 3 0.7
## 1945 10 4 6 0.4
## 1946 10 3 7 0.3
## 1947 10 4 6 0.4
## 1948 10 5 5 0.5
## 1949 10 6 4 0.6
## 1950 10 6 4 0.6
## 1951 10 4 6 0.4
## 1952 10 9 1 0.9
## 1953 10 5 5 0.5
## 1954 10 5 5 0.5
## 1955 10 5 5 0.5
## 1956 10 4 6 0.4
## 1957 10 3 7 0.3
## 1958 10 7 3 0.7
## 1959 10 6 4 0.6
## 1960 10 3 7 0.3
## 1961 10 4 6 0.4
## 1962 10 7 3 0.7
## 1963 10 7 3 0.7
## 1964 10 6 4 0.6
## 1965 10 6 4 0.6
## 1966 10 4 6 0.4
## 1967 10 7 3 0.7
## 1968 10 6 4 0.6
## 1969 10 5 5 0.5
## 1970 10 4 6 0.4
## 1971 10 4 6 0.4
## 1972 10 1 9 0.1
## 1973 10 7 3 0.7
## 1974 10 3 7 0.3
## 1975 10 4 6 0.4
## 1976 10 5 5 0.5
## 1977 10 4 6 0.4
## 1978 10 4 6 0.4
## 1979 10 3 7 0.3
## 1980 10 3 7 0.3
## 1981 10 4 6 0.4
## 1982 10 4 6 0.4
## 1983 10 5 5 0.5
## 1984 10 4 6 0.4
## 1985 10 2 8 0.2
## 1986 10 4 6 0.4
## 1987 10 4 6 0.4
## 1988 10 4 6 0.4
## 1989 10 5 5 0.5
## 1990 10 7 3 0.7
## 1991 10 3 7 0.3
## 1992 10 4 6 0.4
## 1993 10 6 4 0.6
## 1994 10 4 6 0.4
## 1995 10 7 3 0.7
## 1996 10 4 6 0.4
## 1997 10 6 4 0.6
## 1998 10 6 4 0.6
## 1999 10 3 7 0.3
## 2000 10 8 2 0.8
This is the same idea as before, but now there are 2000 rows in the data frame instead of 20.
## [1] 5.0245
ggplot(coin_flips_2000_10, aes(x = heads)) +
geom_histogram(binwidth = 0.5) +
scale_x_continuous(limits = c(-1, 11), breaks = seq(0, 10, 1))
## Warning: Removed 2 rows containing missing values (geom_bar).
This is helpful. In contrast with the set of simulations with twenty people, the last histogram gives us something closer to what we expect. The mode is at five heads, and every possible number of heads is represented, with decreasing counts as one moves away from five. With 2000 people flipping coins, all possible outcomes—including rare ones—are better represented.
Here is the the same histogram, but this time with the proportion of heads instead of the count of heads:
ggplot(coin_flips_2000_10, aes(x = prop)) +
geom_histogram(binwidth = 0.05) +
scale_x_continuous(limits = c(-0.1, 1.1), breaks = seq(0, 1, 0.1))
## Warning: Removed 2 rows containing missing values (geom_bar).
Exercise 3
Do you think the shape of the distribution would be appreciably different if we used 20,000 or even 200,000 people? Why or why not? (Normally, I would encourage you to test your theory by trying it in R. However, it takes a long time to simulate that many flips and I don’t want you to tie up resources and memory. Think through this in your head.)
Please write up your answer here.
From now on, we will insist on using at least a thousand simulations—if not more—to make sure that we represent the full range of possible outcomes.10
8.6 More flips
Now let’s increase the number of coin flips each person performs. We’ll still use 2000 simulations (imagine 2000 people all flipping coins), but this time, each person will flip the coin 1000 times instead of only 10 times. The first code chunk below accounts for a substantial amount of the time it takes to run the code in this document.
## n heads tails prop
## 1 1000 485 515 0.485
## 2 1000 515 485 0.515
## 3 1000 481 519 0.481
## 4 1000 508 492 0.508
## 5 1000 499 501 0.499
## 6 1000 516 484 0.516
## 7 1000 497 503 0.497
## 8 1000 497 503 0.497
## 9 1000 494 506 0.494
## 10 1000 528 472 0.528
## 11 1000 495 505 0.495
## 12 1000 483 517 0.483
## 13 1000 520 480 0.520
## 14 1000 528 472 0.528
## 15 1000 478 522 0.478
## 16 1000 516 484 0.516
## 17 1000 493 507 0.493
## 18 1000 524 476 0.524
## 19 1000 473 527 0.473
## 20 1000 516 484 0.516
## 21 1000 529 471 0.529
## 22 1000 516 484 0.516
## 23 1000 535 465 0.535
## 24 1000 491 509 0.491
## 25 1000 500 500 0.500
## 26 1000 497 503 0.497
## 27 1000 507 493 0.507
## 28 1000 515 485 0.515
## 29 1000 493 507 0.493
## 30 1000 482 518 0.482
## 31 1000 485 515 0.485
## 32 1000 493 507 0.493
## 33 1000 498 502 0.498
## 34 1000 490 510 0.490
## 35 1000 485 515 0.485
## 36 1000 495 505 0.495
## 37 1000 488 512 0.488
## 38 1000 496 504 0.496
## 39 1000 491 509 0.491
## 40 1000 488 512 0.488
## 41 1000 488 512 0.488
## 42 1000 524 476 0.524
## 43 1000 500 500 0.500
## 44 1000 516 484 0.516
## 45 1000 514 486 0.514
## 46 1000 479 521 0.479
## 47 1000 488 512 0.488
## 48 1000 469 531 0.469
## 49 1000 515 485 0.515
## 50 1000 520 480 0.520
## 51 1000 486 514 0.486
## 52 1000 507 493 0.507
## 53 1000 509 491 0.509
## 54 1000 467 533 0.467
## 55 1000 467 533 0.467
## 56 1000 504 496 0.504
## 57 1000 483 517 0.483
## 58 1000 513 487 0.513
## 59 1000 518 482 0.518
## 60 1000 493 507 0.493
## 61 1000 516 484 0.516
## 62 1000 507 493 0.507
## 63 1000 509 491 0.509
## 64 1000 508 492 0.508
## 65 1000 511 489 0.511
## 66 1000 491 509 0.491
## 67 1000 524 476 0.524
## 68 1000 515 485 0.515
## 69 1000 524 476 0.524
## 70 1000 510 490 0.510
## 71 1000 482 518 0.482
## 72 1000 498 502 0.498
## 73 1000 507 493 0.507
## 74 1000 490 510 0.490
## 75 1000 501 499 0.501
## 76 1000 502 498 0.502
## 77 1000 520 480 0.520
## 78 1000 528 472 0.528
## 79 1000 504 496 0.504
## 80 1000 501 499 0.501
## 81 1000 507 493 0.507
## 82 1000 486 514 0.486
## 83 1000 500 500 0.500
## 84 1000 505 495 0.505
## 85 1000 494 506 0.494
## 86 1000 505 495 0.505
## 87 1000 512 488 0.512
## 88 1000 521 479 0.521
## 89 1000 497 503 0.497
## 90 1000 501 499 0.501
## 91 1000 489 511 0.489
## 92 1000 497 503 0.497
## 93 1000 500 500 0.500
## 94 1000 470 530 0.470
## 95 1000 511 489 0.511
## 96 1000 504 496 0.504
## 97 1000 460 540 0.460
## 98 1000 493 507 0.493
## 99 1000 477 523 0.477
## 100 1000 489 511 0.489
## 101 1000 511 489 0.511
## 102 1000 519 481 0.519
## 103 1000 491 509 0.491
## 104 1000 464 536 0.464
## 105 1000 493 507 0.493
## 106 1000 497 503 0.497
## 107 1000 515 485 0.515
## 108 1000 491 509 0.491
## 109 1000 472 528 0.472
## 110 1000 505 495 0.505
## 111 1000 503 497 0.503
## 112 1000 489 511 0.489
## 113 1000 530 470 0.530
## 114 1000 510 490 0.510
## 115 1000 521 479 0.521
## 116 1000 488 512 0.488
## 117 1000 453 547 0.453
## 118 1000 489 511 0.489
## 119 1000 486 514 0.486
## 120 1000 481 519 0.481
## 121 1000 495 505 0.495
## 122 1000 484 516 0.484
## 123 1000 534 466 0.534
## 124 1000 500 500 0.500
## 125 1000 497 503 0.497
## 126 1000 524 476 0.524
## 127 1000 494 506 0.494
## 128 1000 505 495 0.505
## 129 1000 479 521 0.479
## 130 1000 493 507 0.493
## 131 1000 488 512 0.488
## 132 1000 482 518 0.482
## 133 1000 519 481 0.519
## 134 1000 497 503 0.497
## 135 1000 531 469 0.531
## 136 1000 481 519 0.481
## 137 1000 510 490 0.510
## 138 1000 500 500 0.500
## 139 1000 476 524 0.476
## 140 1000 493 507 0.493
## 141 1000 490 510 0.490
## 142 1000 469 531 0.469
## 143 1000 484 516 0.484
## 144 1000 534 466 0.534
## 145 1000 491 509 0.491
## 146 1000 510 490 0.510
## 147 1000 507 493 0.507
## 148 1000 495 505 0.495
## 149 1000 526 474 0.526
## 150 1000 497 503 0.497
## 151 1000 510 490 0.510
## 152 1000 496 504 0.496
## 153 1000 470 530 0.470
## 154 1000 502 498 0.502
## 155 1000 485 515 0.485
## 156 1000 516 484 0.516
## 157 1000 513 487 0.513
## 158 1000 510 490 0.510
## 159 1000 484 516 0.484
## 160 1000 517 483 0.517
## 161 1000 512 488 0.512
## 162 1000 492 508 0.492
## 163 1000 513 487 0.513
## 164 1000 478 522 0.478
## 165 1000 503 497 0.503
## 166 1000 485 515 0.485
## 167 1000 489 511 0.489
## 168 1000 477 523 0.477
## 169 1000 508 492 0.508
## 170 1000 530 470 0.530
## 171 1000 476 524 0.476
## 172 1000 510 490 0.510
## 173 1000 475 525 0.475
## 174 1000 479 521 0.479
## 175 1000 497 503 0.497
## 176 1000 505 495 0.505
## 177 1000 506 494 0.506
## 178 1000 514 486 0.514
## 179 1000 511 489 0.511
## 180 1000 536 464 0.536
## 181 1000 487 513 0.487
## 182 1000 489 511 0.489
## 183 1000 487 513 0.487
## 184 1000 503 497 0.503
## 185 1000 493 507 0.493
## 186 1000 530 470 0.530
## 187 1000 496 504 0.496
## 188 1000 495 505 0.495
## 189 1000 481 519 0.481
## 190 1000 503 497 0.503
## 191 1000 482 518 0.482
## 192 1000 504 496 0.504
## 193 1000 513 487 0.513
## 194 1000 523 477 0.523
## 195 1000 512 488 0.512
## 196 1000 512 488 0.512
## 197 1000 508 492 0.508
## 198 1000 528 472 0.528
## 199 1000 498 502 0.498
## 200 1000 529 471 0.529
## 201 1000 516 484 0.516
## 202 1000 490 510 0.490
## 203 1000 498 502 0.498
## 204 1000 499 501 0.499
## 205 1000 502 498 0.502
## 206 1000 498 502 0.498
## 207 1000 503 497 0.503
## 208 1000 521 479 0.521
## 209 1000 509 491 0.509
## 210 1000 509 491 0.509
## 211 1000 492 508 0.492
## 212 1000 496 504 0.496
## 213 1000 516 484 0.516
## 214 1000 494 506 0.494
## 215 1000 487 513 0.487
## 216 1000 509 491 0.509
## 217 1000 487 513 0.487
## 218 1000 490 510 0.490
## 219 1000 520 480 0.520
## 220 1000 495 505 0.495
## 221 1000 500 500 0.500
## 222 1000 491 509 0.491
## 223 1000 511 489 0.511
## 224 1000 475 525 0.475
## 225 1000 515 485 0.515
## 226 1000 477 523 0.477
## 227 1000 501 499 0.501
## 228 1000 509 491 0.509
## 229 1000 490 510 0.490
## 230 1000 498 502 0.498
## 231 1000 494 506 0.494
## 232 1000 521 479 0.521
## 233 1000 477 523 0.477
## 234 1000 510 490 0.510
## 235 1000 517 483 0.517
## 236 1000 506 494 0.506
## 237 1000 477 523 0.477
## 238 1000 490 510 0.490
## 239 1000 524 476 0.524
## 240 1000 503 497 0.503
## 241 1000 514 486 0.514
## 242 1000 506 494 0.506
## 243 1000 482 518 0.482
## 244 1000 507 493 0.507
## 245 1000 504 496 0.504
## 246 1000 501 499 0.501
## 247 1000 482 518 0.482
## 248 1000 480 520 0.480
## 249 1000 511 489 0.511
## 250 1000 497 503 0.497
## 251 1000 471 529 0.471
## 252 1000 510 490 0.510
## 253 1000 523 477 0.523
## 254 1000 485 515 0.485
## 255 1000 505 495 0.505
## 256 1000 507 493 0.507
## 257 1000 473 527 0.473
## 258 1000 495 505 0.495
## 259 1000 465 535 0.465
## 260 1000 501 499 0.501
## 261 1000 460 540 0.460
## 262 1000 499 501 0.499
## 263 1000 524 476 0.524
## 264 1000 514 486 0.514
## 265 1000 503 497 0.503
## 266 1000 469 531 0.469
## 267 1000 496 504 0.496
## 268 1000 489 511 0.489
## 269 1000 507 493 0.507
## 270 1000 466 534 0.466
## 271 1000 482 518 0.482
## 272 1000 520 480 0.520
## 273 1000 513 487 0.513
## 274 1000 492 508 0.492
## 275 1000 486 514 0.486
## 276 1000 498 502 0.498
## 277 1000 507 493 0.507
## 278 1000 494 506 0.494
## 279 1000 499 501 0.499
## 280 1000 498 502 0.498
## 281 1000 459 541 0.459
## 282 1000 495 505 0.495
## 283 1000 498 502 0.498
## 284 1000 495 505 0.495
## 285 1000 488 512 0.488
## 286 1000 518 482 0.518
## 287 1000 502 498 0.502
## 288 1000 503 497 0.503
## 289 1000 476 524 0.476
## 290 1000 495 505 0.495
## 291 1000 495 505 0.495
## 292 1000 503 497 0.503
## 293 1000 482 518 0.482
## 294 1000 518 482 0.518
## 295 1000 514 486 0.514
## 296 1000 520 480 0.520
## 297 1000 498 502 0.498
## 298 1000 523 477 0.523
## 299 1000 516 484 0.516
## 300 1000 483 517 0.483
## 301 1000 504 496 0.504
## 302 1000 505 495 0.505
## 303 1000 502 498 0.502
## 304 1000 486 514 0.486
## 305 1000 540 460 0.540
## 306 1000 510 490 0.510
## 307 1000 507 493 0.507
## 308 1000 482 518 0.482
## 309 1000 509 491 0.509
## 310 1000 486 514 0.486
## 311 1000 474 526 0.474
## 312 1000 511 489 0.511
## 313 1000 484 516 0.484
## 314 1000 499 501 0.499
## 315 1000 496 504 0.496
## 316 1000 505 495 0.505
## 317 1000 487 513 0.487
## 318 1000 520 480 0.520
## 319 1000 483 517 0.483
## 320 1000 515 485 0.515
## 321 1000 513 487 0.513
## 322 1000 509 491 0.509
## 323 1000 520 480 0.520
## 324 1000 509 491 0.509
## 325 1000 480 520 0.480
## 326 1000 524 476 0.524
## 327 1000 507 493 0.507
## 328 1000 509 491 0.509
## 329 1000 493 507 0.493
## 330 1000 464 536 0.464
## 331 1000 526 474 0.526
## 332 1000 513 487 0.513
## 333 1000 505 495 0.505
## 334 1000 509 491 0.509
## 335 1000 500 500 0.500
## 336 1000 499 501 0.499
## 337 1000 520 480 0.520
## 338 1000 491 509 0.491
## 339 1000 488 512 0.488
## 340 1000 483 517 0.483
## 341 1000 508 492 0.508
## 342 1000 474 526 0.474
## 343 1000 482 518 0.482
## 344 1000 485 515 0.485
## 345 1000 516 484 0.516
## 346 1000 511 489 0.511
## 347 1000 490 510 0.490
## 348 1000 519 481 0.519
## 349 1000 493 507 0.493
## 350 1000 508 492 0.508
## 351 1000 492 508 0.492
## 352 1000 500 500 0.500
## 353 1000 503 497 0.503
## 354 1000 478 522 0.478
## 355 1000 511 489 0.511
## 356 1000 495 505 0.495
## 357 1000 472 528 0.472
## 358 1000 468 532 0.468
## 359 1000 504 496 0.504
## 360 1000 478 522 0.478
## 361 1000 485 515 0.485
## 362 1000 503 497 0.503
## 363 1000 487 513 0.487
## 364 1000 482 518 0.482
## 365 1000 485 515 0.485
## 366 1000 507 493 0.507
## 367 1000 477 523 0.477
## 368 1000 504 496 0.504
## 369 1000 502 498 0.502
## 370 1000 492 508 0.492
## 371 1000 485 515 0.485
## 372 1000 491 509 0.491
## 373 1000 502 498 0.502
## 374 1000 483 517 0.483
## 375 1000 510 490 0.510
## 376 1000 508 492 0.508
## 377 1000 500 500 0.500
## 378 1000 501 499 0.501
## 379 1000 518 482 0.518
## 380 1000 528 472 0.528
## 381 1000 500 500 0.500
## 382 1000 486 514 0.486
## 383 1000 487 513 0.487
## 384 1000 511 489 0.511
## 385 1000 483 517 0.483
## 386 1000 485 515 0.485
## 387 1000 485 515 0.485
## 388 1000 520 480 0.520
## 389 1000 486 514 0.486
## 390 1000 492 508 0.492
## 391 1000 519 481 0.519
## 392 1000 478 522 0.478
## 393 1000 509 491 0.509
## 394 1000 494 506 0.494
## 395 1000 482 518 0.482
## 396 1000 490 510 0.490
## 397 1000 488 512 0.488
## 398 1000 538 462 0.538
## 399 1000 483 517 0.483
## 400 1000 515 485 0.515
## 401 1000 489 511 0.489
## 402 1000 511 489 0.511
## 403 1000 486 514 0.486
## 404 1000 501 499 0.501
## 405 1000 497 503 0.497
## 406 1000 515 485 0.515
## 407 1000 514 486 0.514
## 408 1000 504 496 0.504
## 409 1000 526 474 0.526
## 410 1000 481 519 0.481
## 411 1000 505 495 0.505
## 412 1000 504 496 0.504
## 413 1000 511 489 0.511
## 414 1000 510 490 0.510
## 415 1000 494 506 0.494
## 416 1000 515 485 0.515
## 417 1000 510 490 0.510
## 418 1000 488 512 0.488
## 419 1000 490 510 0.490
## 420 1000 506 494 0.506
## 421 1000 489 511 0.489
## 422 1000 514 486 0.514
## 423 1000 524 476 0.524
## 424 1000 492 508 0.492
## 425 1000 502 498 0.502
## 426 1000 519 481 0.519
## 427 1000 500 500 0.500
## 428 1000 516 484 0.516
## 429 1000 515 485 0.515
## 430 1000 496 504 0.496
## 431 1000 479 521 0.479
## 432 1000 481 519 0.481
## 433 1000 521 479 0.521
## 434 1000 485 515 0.485
## 435 1000 492 508 0.492
## 436 1000 507 493 0.507
## 437 1000 507 493 0.507
## 438 1000 497 503 0.497
## 439 1000 516 484 0.516
## 440 1000 491 509 0.491
## 441 1000 518 482 0.518
## 442 1000 490 510 0.490
## 443 1000 502 498 0.502
## 444 1000 521 479 0.521
## 445 1000 504 496 0.504
## 446 1000 495 505 0.495
## 447 1000 500 500 0.500
## 448 1000 513 487 0.513
## 449 1000 497 503 0.497
## 450 1000 488 512 0.488
## 451 1000 497 503 0.497
## 452 1000 532 468 0.532
## 453 1000 519 481 0.519
## 454 1000 487 513 0.487
## 455 1000 500 500 0.500
## 456 1000 509 491 0.509
## 457 1000 506 494 0.506
## 458 1000 508 492 0.508
## 459 1000 524 476 0.524
## 460 1000 520 480 0.520
## 461 1000 509 491 0.509
## 462 1000 551 449 0.551
## 463 1000 512 488 0.512
## 464 1000 497 503 0.497
## 465 1000 500 500 0.500
## 466 1000 493 507 0.493
## 467 1000 508 492 0.508
## 468 1000 514 486 0.514
## 469 1000 524 476 0.524
## 470 1000 508 492 0.508
## 471 1000 493 507 0.493
## 472 1000 513 487 0.513
## 473 1000 515 485 0.515
## 474 1000 494 506 0.494
## 475 1000 487 513 0.487
## 476 1000 464 536 0.464
## 477 1000 511 489 0.511
## 478 1000 484 516 0.484
## 479 1000 527 473 0.527
## 480 1000 485 515 0.485
## 481 1000 495 505 0.495
## 482 1000 515 485 0.515
## 483 1000 484 516 0.484
## 484 1000 464 536 0.464
## 485 1000 541 459 0.541
## 486 1000 512 488 0.512
## 487 1000 506 494 0.506
## 488 1000 500 500 0.500
## 489 1000 522 478 0.522
## 490 1000 507 493 0.507
## 491 1000 521 479 0.521
## 492 1000 511 489 0.511
## 493 1000 486 514 0.486
## 494 1000 501 499 0.501
## 495 1000 515 485 0.515
## 496 1000 473 527 0.473
## 497 1000 499 501 0.499
## 498 1000 515 485 0.515
## 499 1000 519 481 0.519
## 500 1000 488 512 0.488
## 501 1000 508 492 0.508
## 502 1000 484 516 0.484
## 503 1000 484 516 0.484
## 504 1000 502 498 0.502
## 505 1000 489 511 0.489
## 506 1000 495 505 0.495
## 507 1000 519 481 0.519
## 508 1000 521 479 0.521
## 509 1000 506 494 0.506
## 510 1000 515 485 0.515
## 511 1000 499 501 0.499
## 512 1000 514 486 0.514
## 513 1000 527 473 0.527
## 514 1000 504 496 0.504
## 515 1000 469 531 0.469
## 516 1000 489 511 0.489
## 517 1000 503 497 0.503
## 518 1000 531 469 0.531
## 519 1000 497 503 0.497
## 520 1000 499 501 0.499
## 521 1000 483 517 0.483
## 522 1000 501 499 0.501
## 523 1000 481 519 0.481
## 524 1000 516 484 0.516
## 525 1000 491 509 0.491
## 526 1000 486 514 0.486
## 527 1000 492 508 0.492
## 528 1000 498 502 0.498
## 529 1000 522 478 0.522
## 530 1000 487 513 0.487
## 531 1000 477 523 0.477
## 532 1000 501 499 0.501
## 533 1000 490 510 0.490
## 534 1000 487 513 0.487
## 535 1000 490 510 0.490
## 536 1000 484 516 0.484
## 537 1000 489 511 0.489
## 538 1000 502 498 0.502
## 539 1000 490 510 0.490
## 540 1000 493 507 0.493
## 541 1000 509 491 0.509
## 542 1000 523 477 0.523
## 543 1000 501 499 0.501
## 544 1000 482 518 0.482
## 545 1000 498 502 0.498
## 546 1000 481 519 0.481
## 547 1000 502 498 0.502
## 548 1000 499 501 0.499
## 549 1000 504 496 0.504
## 550 1000 487 513 0.487
## 551 1000 481 519 0.481
## 552 1000 483 517 0.483
## 553 1000 488 512 0.488
## 554 1000 491 509 0.491
## 555 1000 532 468 0.532
## 556 1000 509 491 0.509
## 557 1000 495 505 0.495
## 558 1000 493 507 0.493
## 559 1000 519 481 0.519
## 560 1000 475 525 0.475
## 561 1000 523 477 0.523
## 562 1000 474 526 0.474
## 563 1000 461 539 0.461
## 564 1000 479 521 0.479
## 565 1000 528 472 0.528
## 566 1000 502 498 0.502
## 567 1000 503 497 0.503
## 568 1000 501 499 0.501
## 569 1000 487 513 0.487
## 570 1000 504 496 0.504
## 571 1000 504 496 0.504
## 572 1000 509 491 0.509
## 573 1000 493 507 0.493
## 574 1000 498 502 0.498
## 575 1000 488 512 0.488
## 576 1000 514 486 0.514
## 577 1000 482 518 0.482
## 578 1000 483 517 0.483
## 579 1000 500 500 0.500
## 580 1000 485 515 0.485
## 581 1000 503 497 0.503
## 582 1000 476 524 0.476
## 583 1000 518 482 0.518
## 584 1000 502 498 0.502
## 585 1000 496 504 0.496
## 586 1000 501 499 0.501
## 587 1000 501 499 0.501
## 588 1000 520 480 0.520
## 589 1000 489 511 0.489
## 590 1000 499 501 0.499
## 591 1000 484 516 0.484
## 592 1000 504 496 0.504
## 593 1000 510 490 0.510
## 594 1000 499 501 0.499
## 595 1000 490 510 0.490
## 596 1000 503 497 0.503
## 597 1000 486 514 0.486
## 598 1000 489 511 0.489
## 599 1000 505 495 0.505
## 600 1000 493 507 0.493
## 601 1000 490 510 0.490
## 602 1000 482 518 0.482
## 603 1000 522 478 0.522
## 604 1000 525 475 0.525
## 605 1000 503 497 0.503
## 606 1000 471 529 0.471
## 607 1000 501 499 0.501
## 608 1000 504 496 0.504
## 609 1000 495 505 0.495
## 610 1000 504 496 0.504
## 611 1000 494 506 0.494
## 612 1000 530 470 0.530
## 613 1000 484 516 0.484
## 614 1000 489 511 0.489
## 615 1000 500 500 0.500
## 616 1000 508 492 0.508
## 617 1000 492 508 0.492
## 618 1000 478 522 0.478
## 619 1000 534 466 0.534
## 620 1000 489 511 0.489
## 621 1000 503 497 0.503
## 622 1000 504 496 0.504
## 623 1000 484 516 0.484
## 624 1000 494 506 0.494
## 625 1000 483 517 0.483
## 626 1000 509 491 0.509
## 627 1000 520 480 0.520
## 628 1000 489 511 0.489
## 629 1000 501 499 0.501
## 630 1000 500 500 0.500
## 631 1000 483 517 0.483
## 632 1000 514 486 0.514
## 633 1000 513 487 0.513
## 634 1000 499 501 0.499
## 635 1000 492 508 0.492
## 636 1000 464 536 0.464
## 637 1000 508 492 0.508
## 638 1000 506 494 0.506
## 639 1000 499 501 0.499
## 640 1000 500 500 0.500
## 641 1000 512 488 0.512
## 642 1000 491 509 0.491
## 643 1000 510 490 0.510
## 644 1000 487 513 0.487
## 645 1000 484 516 0.484
## 646 1000 475 525 0.475
## 647 1000 501 499 0.501
## 648 1000 478 522 0.478
## 649 1000 490 510 0.490
## 650 1000 493 507 0.493
## 651 1000 510 490 0.510
## 652 1000 493 507 0.493
## 653 1000 519 481 0.519
## 654 1000 542 458 0.542
## 655 1000 495 505 0.495
## 656 1000 527 473 0.527
## 657 1000 537 463 0.537
## 658 1000 509 491 0.509
## 659 1000 461 539 0.461
## 660 1000 502 498 0.502
## 661 1000 508 492 0.508
## 662 1000 496 504 0.496
## 663 1000 487 513 0.487
## 664 1000 510 490 0.510
## 665 1000 488 512 0.488
## 666 1000 517 483 0.517
## 667 1000 503 497 0.503
## 668 1000 456 544 0.456
## 669 1000 470 530 0.470
## 670 1000 475 525 0.475
## 671 1000 510 490 0.510
## 672 1000 492 508 0.492
## 673 1000 492 508 0.492
## 674 1000 506 494 0.506
## 675 1000 492 508 0.492
## 676 1000 485 515 0.485
## 677 1000 500 500 0.500
## 678 1000 499 501 0.499
## 679 1000 512 488 0.512
## 680 1000 490 510 0.490
## 681 1000 502 498 0.502
## 682 1000 489 511 0.489
## 683 1000 499 501 0.499
## 684 1000 493 507 0.493
## 685 1000 494 506 0.494
## 686 1000 515 485 0.515
## 687 1000 488 512 0.488
## 688 1000 487 513 0.487
## 689 1000 504 496 0.504
## 690 1000 504 496 0.504
## 691 1000 481 519 0.481
## 692 1000 487 513 0.487
## 693 1000 512 488 0.512
## 694 1000 512 488 0.512
## 695 1000 474 526 0.474
## 696 1000 498 502 0.498
## 697 1000 504 496 0.504
## 698 1000 510 490 0.510
## 699 1000 501 499 0.501
## 700 1000 517 483 0.517
## 701 1000 507 493 0.507
## 702 1000 478 522 0.478
## 703 1000 536 464 0.536
## 704 1000 484 516 0.484
## 705 1000 482 518 0.482
## 706 1000 485 515 0.485
## 707 1000 510 490 0.510
## 708 1000 487 513 0.487
## 709 1000 484 516 0.484
## 710 1000 504 496 0.504
## 711 1000 499 501 0.499
## 712 1000 507 493 0.507
## 713 1000 490 510 0.490
## 714 1000 511 489 0.511
## 715 1000 521 479 0.521
## 716 1000 507 493 0.507
## 717 1000 504 496 0.504
## 718 1000 489 511 0.489
## 719 1000 487 513 0.487
## 720 1000 502 498 0.502
## 721 1000 502 498 0.502
## 722 1000 491 509 0.491
## 723 1000 484 516 0.484
## 724 1000 500 500 0.500
## 725 1000 512 488 0.512
## 726 1000 491 509 0.491
## 727 1000 496 504 0.496
## 728 1000 485 515 0.485
## 729 1000 523 477 0.523
## 730 1000 515 485 0.515
## 731 1000 503 497 0.503
## 732 1000 509 491 0.509
## 733 1000 487 513 0.487
## 734 1000 508 492 0.508
## 735 1000 480 520 0.480
## 736 1000 499 501 0.499
## 737 1000 495 505 0.495
## 738 1000 502 498 0.502
## 739 1000 516 484 0.516
## 740 1000 493 507 0.493
## 741 1000 484 516 0.484
## 742 1000 475 525 0.475
## 743 1000 483 517 0.483
## 744 1000 508 492 0.508
## 745 1000 523 477 0.523
## 746 1000 502 498 0.502
## 747 1000 503 497 0.503
## 748 1000 519 481 0.519
## 749 1000 483 517 0.483
## 750 1000 484 516 0.484
## 751 1000 501 499 0.501
## 752 1000 494 506 0.494
## 753 1000 511 489 0.511
## 754 1000 507 493 0.507
## 755 1000 493 507 0.493
## 756 1000 501 499 0.501
## 757 1000 507 493 0.507
## 758 1000 507 493 0.507
## 759 1000 522 478 0.522
## 760 1000 475 525 0.475
## 761 1000 501 499 0.501
## 762 1000 478 522 0.478
## 763 1000 504 496 0.504
## 764 1000 506 494 0.506
## 765 1000 499 501 0.499
## 766 1000 492 508 0.492
## 767 1000 503 497 0.503
## 768 1000 501 499 0.501
## 769 1000 512 488 0.512
## 770 1000 491 509 0.491
## 771 1000 503 497 0.503
## 772 1000 484 516 0.484
## 773 1000 525 475 0.525
## 774 1000 527 473 0.527
## 775 1000 514 486 0.514
## 776 1000 507 493 0.507
## 777 1000 485 515 0.485
## 778 1000 482 518 0.482
## 779 1000 502 498 0.502
## 780 1000 492 508 0.492
## 781 1000 494 506 0.494
## 782 1000 501 499 0.501
## 783 1000 492 508 0.492
## 784 1000 502 498 0.502
## 785 1000 516 484 0.516
## 786 1000 505 495 0.505
## 787 1000 497 503 0.497
## 788 1000 492 508 0.492
## 789 1000 497 503 0.497
## 790 1000 511 489 0.511
## 791 1000 499 501 0.499
## 792 1000 507 493 0.507
## 793 1000 493 507 0.493
## 794 1000 491 509 0.491
## 795 1000 480 520 0.480
## 796 1000 512 488 0.512
## 797 1000 520 480 0.520
## 798 1000 482 518 0.482
## 799 1000 511 489 0.511
## 800 1000 517 483 0.517
## 801 1000 497 503 0.497
## 802 1000 513 487 0.513
## 803 1000 502 498 0.502
## 804 1000 521 479 0.521
## 805 1000 505 495 0.505
## 806 1000 479 521 0.479
## 807 1000 508 492 0.508
## 808 1000 516 484 0.516
## 809 1000 500 500 0.500
## 810 1000 517 483 0.517
## 811 1000 479 521 0.479
## 812 1000 493 507 0.493
## 813 1000 507 493 0.507
## 814 1000 519 481 0.519
## 815 1000 496 504 0.496
## 816 1000 497 503 0.497
## 817 1000 498 502 0.498
## 818 1000 500 500 0.500
## 819 1000 507 493 0.507
## 820 1000 527 473 0.527
## 821 1000 463 537 0.463
## 822 1000 506 494 0.506
## 823 1000 511 489 0.511
## 824 1000 523 477 0.523
## 825 1000 515 485 0.515
## 826 1000 527 473 0.527
## 827 1000 519 481 0.519
## 828 1000 490 510 0.490
## 829 1000 505 495 0.505
## 830 1000 511 489 0.511
## 831 1000 469 531 0.469
## 832 1000 492 508 0.492
## 833 1000 497 503 0.497
## 834 1000 523 477 0.523
## 835 1000 480 520 0.480
## 836 1000 493 507 0.493
## 837 1000 529 471 0.529
## 838 1000 523 477 0.523
## 839 1000 499 501 0.499
## 840 1000 523 477 0.523
## 841 1000 501 499 0.501
## 842 1000 505 495 0.505
## 843 1000 523 477 0.523
## 844 1000 504 496 0.504
## 845 1000 492 508 0.492
## 846 1000 470 530 0.470
## 847 1000 493 507 0.493
## 848 1000 511 489 0.511
## 849 1000 485 515 0.485
## 850 1000 510 490 0.510
## 851 1000 498 502 0.498
## 852 1000 506 494 0.506
## 853 1000 501 499 0.501
## 854 1000 519 481 0.519
## 855 1000 514 486 0.514
## 856 1000 489 511 0.489
## 857 1000 513 487 0.513
## 858 1000 533 467 0.533
## 859 1000 485 515 0.485
## 860 1000 499 501 0.499
## 861 1000 490 510 0.490
## 862 1000 508 492 0.508
## 863 1000 482 518 0.482
## 864 1000 496 504 0.496
## 865 1000 496 504 0.496
## 866 1000 525 475 0.525
## 867 1000 500 500 0.500
## 868 1000 480 520 0.480
## 869 1000 493 507 0.493
## 870 1000 500 500 0.500
## 871 1000 489 511 0.489
## 872 1000 503 497 0.503
## 873 1000 479 521 0.479
## 874 1000 500 500 0.500
## 875 1000 499 501 0.499
## 876 1000 502 498 0.502
## 877 1000 485 515 0.485
## 878 1000 515 485 0.515
## 879 1000 512 488 0.512
## 880 1000 509 491 0.509
## 881 1000 499 501 0.499
## 882 1000 477 523 0.477
## 883 1000 515 485 0.515
## 884 1000 490 510 0.490
## 885 1000 505 495 0.505
## 886 1000 499 501 0.499
## 887 1000 495 505 0.495
## 888 1000 527 473 0.527
## 889 1000 514 486 0.514
## 890 1000 513 487 0.513
## 891 1000 505 495 0.505
## 892 1000 504 496 0.504
## 893 1000 482 518 0.482
## 894 1000 499 501 0.499
## 895 1000 491 509 0.491
## 896 1000 474 526 0.474
## 897 1000 513 487 0.513
## 898 1000 492 508 0.492
## 899 1000 504 496 0.504
## 900 1000 511 489 0.511
## 901 1000 488 512 0.488
## 902 1000 534 466 0.534
## 903 1000 485 515 0.485
## 904 1000 471 529 0.471
## 905 1000 511 489 0.511
## 906 1000 502 498 0.502
## 907 1000 517 483 0.517
## 908 1000 520 480 0.520
## 909 1000 525 475 0.525
## 910 1000 517 483 0.517
## 911 1000 495 505 0.495
## 912 1000 497 503 0.497
## 913 1000 493 507 0.493
## 914 1000 496 504 0.496
## 915 1000 472 528 0.472
## 916 1000 503 497 0.503
## 917 1000 512 488 0.512
## 918 1000 488 512 0.488
## 919 1000 482 518 0.482
## 920 1000 496 504 0.496
## 921 1000 474 526 0.474
## 922 1000 502 498 0.502
## 923 1000 490 510 0.490
## 924 1000 516 484 0.516
## 925 1000 488 512 0.488
## 926 1000 489 511 0.489
## 927 1000 477 523 0.477
## 928 1000 511 489 0.511
## 929 1000 486 514 0.486
## 930 1000 482 518 0.482
## 931 1000 486 514 0.486
## 932 1000 506 494 0.506
## 933 1000 492 508 0.492
## 934 1000 482 518 0.482
## 935 1000 509 491 0.509
## 936 1000 511 489 0.511
## 937 1000 477 523 0.477
## 938 1000 507 493 0.507
## 939 1000 506 494 0.506
## 940 1000 497 503 0.497
## 941 1000 506 494 0.506
## 942 1000 495 505 0.495
## 943 1000 513 487 0.513
## 944 1000 511 489 0.511
## 945 1000 486 514 0.486
## 946 1000 486 514 0.486
## 947 1000 511 489 0.511
## 948 1000 492 508 0.492
## 949 1000 475 525 0.475
## 950 1000 490 510 0.490
## 951 1000 488 512 0.488
## 952 1000 493 507 0.493
## 953 1000 485 515 0.485
## 954 1000 509 491 0.509
## 955 1000 486 514 0.486
## 956 1000 504 496 0.504
## 957 1000 477 523 0.477
## 958 1000 512 488 0.512
## 959 1000 501 499 0.501
## 960 1000 487 513 0.487
## 961 1000 493 507 0.493
## 962 1000 492 508 0.492
## 963 1000 512 488 0.512
## 964 1000 505 495 0.505
## 965 1000 494 506 0.494
## 966 1000 494 506 0.494
## 967 1000 493 507 0.493
## 968 1000 502 498 0.502
## 969 1000 498 502 0.498
## 970 1000 498 502 0.498
## 971 1000 517 483 0.517
## 972 1000 525 475 0.525
## 973 1000 530 470 0.530
## 974 1000 503 497 0.503
## 975 1000 486 514 0.486
## 976 1000 525 475 0.525
## 977 1000 503 497 0.503
## 978 1000 493 507 0.493
## 979 1000 485 515 0.485
## 980 1000 485 515 0.485
## 981 1000 529 471 0.529
## 982 1000 508 492 0.508
## 983 1000 495 505 0.495
## 984 1000 488 512 0.488
## 985 1000 519 481 0.519
## 986 1000 515 485 0.515
## 987 1000 464 536 0.464
## 988 1000 524 476 0.524
## 989 1000 522 478 0.522
## 990 1000 520 480 0.520
## 991 1000 508 492 0.508
## 992 1000 512 488 0.512
## 993 1000 504 496 0.504
## 994 1000 481 519 0.481
## 995 1000 450 550 0.450
## 996 1000 500 500 0.500
## 997 1000 499 501 0.499
## 998 1000 487 513 0.487
## 999 1000 481 519 0.481
## 1000 1000 498 502 0.498
## 1001 1000 520 480 0.520
## 1002 1000 492 508 0.492
## 1003 1000 532 468 0.532
## 1004 1000 512 488 0.512
## 1005 1000 503 497 0.503
## 1006 1000 482 518 0.482
## 1007 1000 486 514 0.486
## 1008 1000 518 482 0.518
## 1009 1000 469 531 0.469
## 1010 1000 468 532 0.468
## 1011 1000 471 529 0.471
## 1012 1000 524 476 0.524
## 1013 1000 500 500 0.500
## 1014 1000 514 486 0.514
## 1015 1000 510 490 0.510
## 1016 1000 478 522 0.478
## 1017 1000 518 482 0.518
## 1018 1000 503 497 0.503
## 1019 1000 512 488 0.512
## 1020 1000 506 494 0.506
## 1021 1000 492 508 0.492
## 1022 1000 513 487 0.513
## 1023 1000 499 501 0.499
## 1024 1000 469 531 0.469
## 1025 1000 497 503 0.497
## 1026 1000 491 509 0.491
## 1027 1000 508 492 0.508
## 1028 1000 498 502 0.498
## 1029 1000 500 500 0.500
## 1030 1000 513 487 0.513
## 1031 1000 502 498 0.502
## 1032 1000 528 472 0.528
## 1033 1000 482 518 0.482
## 1034 1000 497 503 0.497
## 1035 1000 510 490 0.510
## 1036 1000 509 491 0.509
## 1037 1000 490 510 0.490
## 1038 1000 500 500 0.500
## 1039 1000 470 530 0.470
## 1040 1000 481 519 0.481
## 1041 1000 510 490 0.510
## 1042 1000 465 535 0.465
## 1043 1000 501 499 0.501
## 1044 1000 495 505 0.495
## 1045 1000 490 510 0.490
## 1046 1000 491 509 0.491
## 1047 1000 497 503 0.497
## 1048 1000 495 505 0.495
## 1049 1000 532 468 0.532
## 1050 1000 497 503 0.497
## 1051 1000 510 490 0.510
## 1052 1000 488 512 0.488
## 1053 1000 480 520 0.480
## 1054 1000 532 468 0.532
## 1055 1000 484 516 0.484
## 1056 1000 512 488 0.512
## 1057 1000 491 509 0.491
## 1058 1000 498 502 0.498
## 1059 1000 495 505 0.495
## 1060 1000 482 518 0.482
## 1061 1000 495 505 0.495
## 1062 1000 489 511 0.489
## 1063 1000 486 514 0.486
## 1064 1000 515 485 0.515
## 1065 1000 500 500 0.500
## 1066 1000 494 506 0.494
## 1067 1000 520 480 0.520
## 1068 1000 516 484 0.516
## 1069 1000 497 503 0.497
## 1070 1000 511 489 0.511
## 1071 1000 499 501 0.499
## 1072 1000 475 525 0.475
## 1073 1000 480 520 0.480
## 1074 1000 508 492 0.508
## 1075 1000 487 513 0.487
## 1076 1000 483 517 0.483
## 1077 1000 500 500 0.500
## 1078 1000 502 498 0.502
## 1079 1000 471 529 0.471
## 1080 1000 526 474 0.526
## 1081 1000 494 506 0.494
## 1082 1000 507 493 0.507
## 1083 1000 508 492 0.508
## 1084 1000 487 513 0.487
## 1085 1000 493 507 0.493
## 1086 1000 504 496 0.504
## 1087 1000 514 486 0.514
## 1088 1000 512 488 0.512
## 1089 1000 499 501 0.499
## 1090 1000 531 469 0.531
## 1091 1000 485 515 0.485
## 1092 1000 515 485 0.515
## 1093 1000 475 525 0.475
## 1094 1000 473 527 0.473
## 1095 1000 487 513 0.487
## 1096 1000 481 519 0.481
## 1097 1000 486 514 0.486
## 1098 1000 466 534 0.466
## 1099 1000 475 525 0.475
## 1100 1000 513 487 0.513
## 1101 1000 497 503 0.497
## 1102 1000 523 477 0.523
## 1103 1000 491 509 0.491
## 1104 1000 521 479 0.521
## 1105 1000 489 511 0.489
## 1106 1000 512 488 0.512
## 1107 1000 496 504 0.496
## 1108 1000 517 483 0.517
## 1109 1000 533 467 0.533
## 1110 1000 527 473 0.527
## 1111 1000 533 467 0.533
## 1112 1000 497 503 0.497
## 1113 1000 490 510 0.490
## 1114 1000 481 519 0.481
## 1115 1000 491 509 0.491
## 1116 1000 489 511 0.489
## 1117 1000 472 528 0.472
## 1118 1000 511 489 0.511
## 1119 1000 494 506 0.494
## 1120 1000 545 455 0.545
## 1121 1000 498 502 0.498
## 1122 1000 490 510 0.490
## 1123 1000 516 484 0.516
## 1124 1000 475 525 0.475
## 1125 1000 494 506 0.494
## 1126 1000 537 463 0.537
## 1127 1000 481 519 0.481
## 1128 1000 495 505 0.495
## 1129 1000 488 512 0.488
## 1130 1000 490 510 0.490
## 1131 1000 486 514 0.486
## 1132 1000 527 473 0.527
## 1133 1000 501 499 0.501
## 1134 1000 505 495 0.505
## 1135 1000 502 498 0.502
## 1136 1000 494 506 0.494
## 1137 1000 495 505 0.495
## 1138 1000 517 483 0.517
## 1139 1000 480 520 0.480
## 1140 1000 477 523 0.477
## 1141 1000 505 495 0.505
## 1142 1000 516 484 0.516
## 1143 1000 526 474 0.526
## 1144 1000 518 482 0.518
## 1145 1000 495 505 0.495
## 1146 1000 511 489 0.511
## 1147 1000 493 507 0.493
## 1148 1000 506 494 0.506
## 1149 1000 498 502 0.498
## 1150 1000 504 496 0.504
## 1151 1000 509 491 0.509
## 1152 1000 487 513 0.487
## 1153 1000 504 496 0.504
## 1154 1000 496 504 0.496
## 1155 1000 512 488 0.512
## 1156 1000 477 523 0.477
## 1157 1000 514 486 0.514
## 1158 1000 511 489 0.511
## 1159 1000 475 525 0.475
## 1160 1000 464 536 0.464
## 1161 1000 448 552 0.448
## 1162 1000 526 474 0.526
## 1163 1000 538 462 0.538
## 1164 1000 499 501 0.499
## 1165 1000 487 513 0.487
## 1166 1000 509 491 0.509
## 1167 1000 501 499 0.501
## 1168 1000 481 519 0.481
## 1169 1000 509 491 0.509
## 1170 1000 486 514 0.486
## 1171 1000 487 513 0.487
## 1172 1000 491 509 0.491
## 1173 1000 489 511 0.489
## 1174 1000 475 525 0.475
## 1175 1000 474 526 0.474
## 1176 1000 473 527 0.473
## 1177 1000 513 487 0.513
## 1178 1000 517 483 0.517
## 1179 1000 497 503 0.497
## 1180 1000 469 531 0.469
## 1181 1000 520 480 0.520
## 1182 1000 457 543 0.457
## 1183 1000 532 468 0.532
## 1184 1000 500 500 0.500
## 1185 1000 514 486 0.514
## 1186 1000 522 478 0.522
## 1187 1000 517 483 0.517
## 1188 1000 518 482 0.518
## 1189 1000 503 497 0.503
## 1190 1000 506 494 0.506
## 1191 1000 504 496 0.504
## 1192 1000 509 491 0.509
## 1193 1000 506 494 0.506
## 1194 1000 511 489 0.511
## 1195 1000 496 504 0.496
## 1196 1000 513 487 0.513
## 1197 1000 505 495 0.505
## 1198 1000 512 488 0.512
## 1199 1000 495 505 0.495
## 1200 1000 512 488 0.512
## 1201 1000 495 505 0.495
## 1202 1000 527 473 0.527
## 1203 1000 495 505 0.495
## 1204 1000 513 487 0.513
## 1205 1000 515 485 0.515
## 1206 1000 488 512 0.488
## 1207 1000 495 505 0.495
## 1208 1000 494 506 0.494
## 1209 1000 505 495 0.505
## 1210 1000 500 500 0.500
## 1211 1000 483 517 0.483
## 1212 1000 505 495 0.505
## 1213 1000 523 477 0.523
## 1214 1000 508 492 0.508
## 1215 1000 498 502 0.498
## 1216 1000 499 501 0.499
## 1217 1000 489 511 0.489
## 1218 1000 505 495 0.505
## 1219 1000 509 491 0.509
## 1220 1000 501 499 0.501
## 1221 1000 496 504 0.496
## 1222 1000 496 504 0.496
## 1223 1000 504 496 0.504
## 1224 1000 491 509 0.491
## 1225 1000 500 500 0.500
## 1226 1000 523 477 0.523
## 1227 1000 499 501 0.499
## 1228 1000 489 511 0.489
## 1229 1000 486 514 0.486
## 1230 1000 515 485 0.515
## 1231 1000 494 506 0.494
## 1232 1000 496 504 0.496
## 1233 1000 496 504 0.496
## 1234 1000 486 514 0.486
## 1235 1000 533 467 0.533
## 1236 1000 487 513 0.487
## 1237 1000 485 515 0.485
## 1238 1000 503 497 0.503
## 1239 1000 508 492 0.508
## 1240 1000 510 490 0.510
## 1241 1000 496 504 0.496
## 1242 1000 497 503 0.497
## 1243 1000 504 496 0.504
## 1244 1000 470 530 0.470
## 1245 1000 512 488 0.512
## 1246 1000 526 474 0.526
## 1247 1000 487 513 0.487
## 1248 1000 508 492 0.508
## 1249 1000 505 495 0.505
## 1250 1000 519 481 0.519
## 1251 1000 490 510 0.490
## 1252 1000 475 525 0.475
## 1253 1000 479 521 0.479
## 1254 1000 509 491 0.509
## 1255 1000 500 500 0.500
## 1256 1000 479 521 0.479
## 1257 1000 529 471 0.529
## 1258 1000 518 482 0.518
## 1259 1000 510 490 0.510
## 1260 1000 482 518 0.482
## 1261 1000 498 502 0.498
## 1262 1000 478 522 0.478
## 1263 1000 498 502 0.498
## 1264 1000 521 479 0.521
## 1265 1000 501 499 0.501
## 1266 1000 489 511 0.489
## 1267 1000 502 498 0.502
## 1268 1000 509 491 0.509
## 1269 1000 502 498 0.502
## 1270 1000 455 545 0.455
## 1271 1000 486 514 0.486
## 1272 1000 524 476 0.524
## 1273 1000 510 490 0.510
## 1274 1000 492 508 0.492
## 1275 1000 484 516 0.484
## 1276 1000 480 520 0.480
## 1277 1000 520 480 0.520
## 1278 1000 486 514 0.486
## 1279 1000 506 494 0.506
## 1280 1000 492 508 0.492
## 1281 1000 512 488 0.512
## 1282 1000 522 478 0.522
## 1283 1000 525 475 0.525
## 1284 1000 494 506 0.494
## 1285 1000 500 500 0.500
## 1286 1000 499 501 0.499
## 1287 1000 522 478 0.522
## 1288 1000 494 506 0.494
## 1289 1000 525 475 0.525
## 1290 1000 506 494 0.506
## 1291 1000 496 504 0.496
## 1292 1000 524 476 0.524
## 1293 1000 475 525 0.475
## 1294 1000 465 535 0.465
## 1295 1000 495 505 0.495
## 1296 1000 517 483 0.517
## 1297 1000 502 498 0.502
## 1298 1000 494 506 0.494
## 1299 1000 518 482 0.518
## 1300 1000 479 521 0.479
## 1301 1000 513 487 0.513
## 1302 1000 522 478 0.522
## 1303 1000 494 506 0.494
## 1304 1000 499 501 0.499
## 1305 1000 493 507 0.493
## 1306 1000 535 465 0.535
## 1307 1000 495 505 0.495
## 1308 1000 507 493 0.507
## 1309 1000 509 491 0.509
## 1310 1000 500 500 0.500
## 1311 1000 480 520 0.480
## 1312 1000 524 476 0.524
## 1313 1000 489 511 0.489
## 1314 1000 504 496 0.504
## 1315 1000 516 484 0.516
## 1316 1000 521 479 0.521
## 1317 1000 532 468 0.532
## 1318 1000 518 482 0.518
## 1319 1000 500 500 0.500
## 1320 1000 502 498 0.502
## 1321 1000 491 509 0.491
## 1322 1000 529 471 0.529
## 1323 1000 513 487 0.513
## 1324 1000 489 511 0.489
## 1325 1000 496 504 0.496
## 1326 1000 515 485 0.515
## 1327 1000 498 502 0.498
## 1328 1000 495 505 0.495
## 1329 1000 459 541 0.459
## 1330 1000 521 479 0.521
## 1331 1000 515 485 0.515
## 1332 1000 491 509 0.491
## 1333 1000 496 504 0.496
## 1334 1000 514 486 0.514
## 1335 1000 497 503 0.497
## 1336 1000 515 485 0.515
## 1337 1000 483 517 0.483
## 1338 1000 497 503 0.497
## 1339 1000 496 504 0.496
## 1340 1000 495 505 0.495
## 1341 1000 497 503 0.497
## 1342 1000 499 501 0.499
## 1343 1000 515 485 0.515
## 1344 1000 520 480 0.520
## 1345 1000 520 480 0.520
## 1346 1000 513 487 0.513
## 1347 1000 504 496 0.504
## 1348 1000 528 472 0.528
## 1349 1000 489 511 0.489
## 1350 1000 512 488 0.512
## 1351 1000 527 473 0.527
## 1352 1000 503 497 0.503
## 1353 1000 471 529 0.471
## 1354 1000 478 522 0.478
## 1355 1000 501 499 0.501
## 1356 1000 491 509 0.491
## 1357 1000 504 496 0.504
## 1358 1000 502 498 0.502
## 1359 1000 471 529 0.471
## 1360 1000 492 508 0.492
## 1361 1000 488 512 0.488
## 1362 1000 494 506 0.494
## 1363 1000 531 469 0.531
## 1364 1000 473 527 0.473
## 1365 1000 487 513 0.487
## 1366 1000 503 497 0.503
## 1367 1000 494 506 0.494
## 1368 1000 530 470 0.530
## 1369 1000 496 504 0.496
## 1370 1000 517 483 0.517
## 1371 1000 526 474 0.526
## 1372 1000 515 485 0.515
## 1373 1000 488 512 0.488
## 1374 1000 455 545 0.455
## 1375 1000 503 497 0.503
## 1376 1000 494 506 0.494
## 1377 1000 527 473 0.527
## 1378 1000 503 497 0.503
## 1379 1000 472 528 0.472
## 1380 1000 511 489 0.511
## 1381 1000 488 512 0.488
## 1382 1000 493 507 0.493
## 1383 1000 520 480 0.520
## 1384 1000 524 476 0.524
## 1385 1000 508 492 0.508
## 1386 1000 515 485 0.515
## 1387 1000 519 481 0.519
## 1388 1000 490 510 0.490
## 1389 1000 477 523 0.477
## 1390 1000 508 492 0.508
## 1391 1000 515 485 0.515
## 1392 1000 520 480 0.520
## 1393 1000 489 511 0.489
## 1394 1000 500 500 0.500
## 1395 1000 519 481 0.519
## 1396 1000 493 507 0.493
## 1397 1000 509 491 0.509
## 1398 1000 489 511 0.489
## 1399 1000 494 506 0.494
## 1400 1000 508 492 0.508
## 1401 1000 513 487 0.513
## 1402 1000 514 486 0.514
## 1403 1000 516 484 0.516
## 1404 1000 502 498 0.502
## 1405 1000 496 504 0.496
## 1406 1000 483 517 0.483
## 1407 1000 516 484 0.516
## 1408 1000 502 498 0.502
## 1409 1000 510 490 0.510
## 1410 1000 469 531 0.469
## 1411 1000 487 513 0.487
## 1412 1000 518 482 0.518
## 1413 1000 499 501 0.499
## 1414 1000 463 537 0.463
## 1415 1000 521 479 0.521
## 1416 1000 483 517 0.483
## 1417 1000 469 531 0.469
## 1418 1000 493 507 0.493
## 1419 1000 496 504 0.496
## 1420 1000 482 518 0.482
## 1421 1000 477 523 0.477
## 1422 1000 536 464 0.536
## 1423 1000 507 493 0.507
## 1424 1000 505 495 0.505
## 1425 1000 511 489 0.511
## 1426 1000 517 483 0.517
## 1427 1000 510 490 0.510
## 1428 1000 486 514 0.486
## 1429 1000 520 480 0.520
## 1430 1000 493 507 0.493
## 1431 1000 497 503 0.497
## 1432 1000 491 509 0.491
## 1433 1000 520 480 0.520
## 1434 1000 494 506 0.494
## 1435 1000 514 486 0.514
## 1436 1000 479 521 0.479
## 1437 1000 506 494 0.506
## 1438 1000 492 508 0.492
## 1439 1000 474 526 0.474
## 1440 1000 501 499 0.501
## 1441 1000 504 496 0.504
## 1442 1000 507 493 0.507
## 1443 1000 482 518 0.482
## 1444 1000 512 488 0.512
## 1445 1000 506 494 0.506
## 1446 1000 516 484 0.516
## 1447 1000 504 496 0.504
## 1448 1000 508 492 0.508
## 1449 1000 504 496 0.504
## 1450 1000 499 501 0.499
## 1451 1000 520 480 0.520
## 1452 1000 484 516 0.484
## 1453 1000 504 496 0.504
## 1454 1000 499 501 0.499
## 1455 1000 499 501 0.499
## 1456 1000 500 500 0.500
## 1457 1000 503 497 0.503
## 1458 1000 488 512 0.488
## 1459 1000 474 526 0.474
## 1460 1000 504 496 0.504
## 1461 1000 510 490 0.510
## 1462 1000 498 502 0.498
## 1463 1000 510 490 0.510
## 1464 1000 523 477 0.523
## 1465 1000 525 475 0.525
## 1466 1000 475 525 0.475
## 1467 1000 496 504 0.496
## 1468 1000 482 518 0.482
## 1469 1000 506 494 0.506
## 1470 1000 468 532 0.468
## 1471 1000 500 500 0.500
## 1472 1000 486 514 0.486
## 1473 1000 508 492 0.508
## 1474 1000 517 483 0.517
## 1475 1000 507 493 0.507
## 1476 1000 518 482 0.518
## 1477 1000 508 492 0.508
## 1478 1000 482 518 0.482
## 1479 1000 504 496 0.504
## 1480 1000 483 517 0.483
## 1481 1000 521 479 0.521
## 1482 1000 506 494 0.506
## 1483 1000 510 490 0.510
## 1484 1000 500 500 0.500
## 1485 1000 473 527 0.473
## 1486 1000 516 484 0.516
## 1487 1000 505 495 0.505
## 1488 1000 486 514 0.486
## 1489 1000 467 533 0.467
## 1490 1000 522 478 0.522
## 1491 1000 515 485 0.515
## 1492 1000 495 505 0.495
## 1493 1000 476 524 0.476
## 1494 1000 497 503 0.497
## 1495 1000 514 486 0.514
## 1496 1000 490 510 0.490
## 1497 1000 518 482 0.518
## 1498 1000 508 492 0.508
## 1499 1000 480 520 0.480
## 1500 1000 501 499 0.501
## 1501 1000 490 510 0.490
## 1502 1000 475 525 0.475
## 1503 1000 493 507 0.493
## 1504 1000 498 502 0.498
## 1505 1000 541 459 0.541
## 1506 1000 484 516 0.484
## 1507 1000 508 492 0.508
## 1508 1000 453 547 0.453
## 1509 1000 530 470 0.530
## 1510 1000 491 509 0.491
## 1511 1000 496 504 0.496
## 1512 1000 520 480 0.520
## 1513 1000 508 492 0.508
## 1514 1000 504 496 0.504
## 1515 1000 524 476 0.524
## 1516 1000 510 490 0.510
## 1517 1000 500 500 0.500
## 1518 1000 490 510 0.490
## 1519 1000 505 495 0.505
## 1520 1000 509 491 0.509
## 1521 1000 525 475 0.525
## 1522 1000 493 507 0.493
## 1523 1000 511 489 0.511
## 1524 1000 497 503 0.497
## 1525 1000 479 521 0.479
## 1526 1000 489 511 0.489
## 1527 1000 528 472 0.528
## 1528 1000 515 485 0.515
## 1529 1000 492 508 0.492
## 1530 1000 498 502 0.498
## 1531 1000 518 482 0.518
## 1532 1000 484 516 0.484
## 1533 1000 485 515 0.485
## 1534 1000 502 498 0.502
## 1535 1000 515 485 0.515
## 1536 1000 535 465 0.535
## 1537 1000 529 471 0.529
## 1538 1000 481 519 0.481
## 1539 1000 505 495 0.505
## 1540 1000 492 508 0.492
## 1541 1000 478 522 0.478
## 1542 1000 514 486 0.514
## 1543 1000 491 509 0.491
## 1544 1000 494 506 0.494
## 1545 1000 498 502 0.498
## 1546 1000 487 513 0.487
## 1547 1000 494 506 0.494
## 1548 1000 511 489 0.511
## 1549 1000 510 490 0.510
## 1550 1000 488 512 0.488
## 1551 1000 491 509 0.491
## 1552 1000 544 456 0.544
## 1553 1000 514 486 0.514
## 1554 1000 501 499 0.501
## 1555 1000 506 494 0.506
## 1556 1000 485 515 0.485
## 1557 1000 505 495 0.505
## 1558 1000 490 510 0.490
## 1559 1000 502 498 0.502
## 1560 1000 500 500 0.500
## 1561 1000 485 515 0.485
## 1562 1000 503 497 0.503
## 1563 1000 483 517 0.483
## 1564 1000 517 483 0.517
## 1565 1000 509 491 0.509
## 1566 1000 510 490 0.510
## 1567 1000 488 512 0.488
## 1568 1000 491 509 0.491
## 1569 1000 526 474 0.526
## 1570 1000 484 516 0.484
## 1571 1000 494 506 0.494
## 1572 1000 498 502 0.498
## 1573 1000 481 519 0.481
## 1574 1000 520 480 0.520
## 1575 1000 504 496 0.504
## 1576 1000 512 488 0.512
## 1577 1000 510 490 0.510
## 1578 1000 503 497 0.503
## 1579 1000 501 499 0.501
## 1580 1000 495 505 0.495
## 1581 1000 497 503 0.497
## 1582 1000 533 467 0.533
## 1583 1000 521 479 0.521
## 1584 1000 492 508 0.492
## 1585 1000 496 504 0.496
## 1586 1000 484 516 0.484
## 1587 1000 487 513 0.487
## 1588 1000 495 505 0.495
## 1589 1000 476 524 0.476
## 1590 1000 483 517 0.483
## 1591 1000 520 480 0.520
## 1592 1000 502 498 0.502
## 1593 1000 497 503 0.497
## 1594 1000 495 505 0.495
## 1595 1000 510 490 0.510
## 1596 1000 500 500 0.500
## 1597 1000 517 483 0.517
## 1598 1000 513 487 0.513
## 1599 1000 491 509 0.491
## 1600 1000 475 525 0.475
## 1601 1000 498 502 0.498
## 1602 1000 516 484 0.516
## 1603 1000 493 507 0.493
## 1604 1000 485 515 0.485
## 1605 1000 504 496 0.504
## 1606 1000 496 504 0.496
## 1607 1000 480 520 0.480
## 1608 1000 498 502 0.498
## 1609 1000 530 470 0.530
## 1610 1000 470 530 0.470
## 1611 1000 516 484 0.516
## 1612 1000 514 486 0.514
## 1613 1000 500 500 0.500
## 1614 1000 469 531 0.469
## 1615 1000 495 505 0.495
## 1616 1000 489 511 0.489
## 1617 1000 503 497 0.503
## 1618 1000 475 525 0.475
## 1619 1000 492 508 0.492
## 1620 1000 504 496 0.504
## 1621 1000 488 512 0.488
## 1622 1000 492 508 0.492
## 1623 1000 516 484 0.516
## 1624 1000 479 521 0.479
## 1625 1000 502 498 0.502
## 1626 1000 490 510 0.490
## 1627 1000 493 507 0.493
## 1628 1000 517 483 0.517
## 1629 1000 509 491 0.509
## 1630 1000 498 502 0.498
## 1631 1000 517 483 0.517
## 1632 1000 497 503 0.497
## 1633 1000 519 481 0.519
## 1634 1000 493 507 0.493
## 1635 1000 500 500 0.500
## 1636 1000 501 499 0.501
## 1637 1000 486 514 0.486
## 1638 1000 502 498 0.502
## 1639 1000 500 500 0.500
## 1640 1000 505 495 0.505
## 1641 1000 464 536 0.464
## 1642 1000 500 500 0.500
## 1643 1000 502 498 0.502
## 1644 1000 488 512 0.488
## 1645 1000 480 520 0.480
## 1646 1000 491 509 0.491
## 1647 1000 529 471 0.529
## 1648 1000 490 510 0.490
## 1649 1000 487 513 0.487
## 1650 1000 494 506 0.494
## 1651 1000 527 473 0.527
## 1652 1000 493 507 0.493
## 1653 1000 512 488 0.512
## 1654 1000 512 488 0.512
## 1655 1000 481 519 0.481
## 1656 1000 486 514 0.486
## 1657 1000 459 541 0.459
## 1658 1000 487 513 0.487
## 1659 1000 481 519 0.481
## 1660 1000 544 456 0.544
## 1661 1000 479 521 0.479
## 1662 1000 513 487 0.513
## 1663 1000 501 499 0.501
## 1664 1000 480 520 0.480
## 1665 1000 489 511 0.489
## 1666 1000 491 509 0.491
## 1667 1000 503 497 0.503
## 1668 1000 527 473 0.527
## 1669 1000 506 494 0.506
## 1670 1000 487 513 0.487
## 1671 1000 506 494 0.506
## 1672 1000 506 494 0.506
## 1673 1000 485 515 0.485
## 1674 1000 525 475 0.525
## 1675 1000 520 480 0.520
## 1676 1000 490 510 0.490
## 1677 1000 508 492 0.508
## 1678 1000 488 512 0.488
## 1679 1000 505 495 0.505
## 1680 1000 485 515 0.485
## 1681 1000 508 492 0.508
## 1682 1000 473 527 0.473
## 1683 1000 503 497 0.503
## 1684 1000 526 474 0.526
## 1685 1000 496 504 0.496
## 1686 1000 524 476 0.524
## 1687 1000 498 502 0.498
## 1688 1000 540 460 0.540
## 1689 1000 486 514 0.486
## 1690 1000 491 509 0.491
## 1691 1000 499 501 0.499
## 1692 1000 521 479 0.521
## 1693 1000 496 504 0.496
## 1694 1000 501 499 0.501
## 1695 1000 485 515 0.485
## 1696 1000 482 518 0.482
## 1697 1000 510 490 0.510
## 1698 1000 488 512 0.488
## 1699 1000 499 501 0.499
## 1700 1000 486 514 0.486
## 1701 1000 496 504 0.496
## 1702 1000 504 496 0.504
## 1703 1000 499 501 0.499
## 1704 1000 484 516 0.484
## 1705 1000 489 511 0.489
## 1706 1000 491 509 0.491
## 1707 1000 515 485 0.515
## 1708 1000 476 524 0.476
## 1709 1000 508 492 0.508
## 1710 1000 485 515 0.485
## 1711 1000 483 517 0.483
## 1712 1000 529 471 0.529
## 1713 1000 552 448 0.552
## 1714 1000 483 517 0.483
## 1715 1000 511 489 0.511
## 1716 1000 479 521 0.479
## 1717 1000 496 504 0.496
## 1718 1000 511 489 0.511
## 1719 1000 530 470 0.530
## 1720 1000 501 499 0.501
## 1721 1000 505 495 0.505
## 1722 1000 527 473 0.527
## 1723 1000 495 505 0.495
## 1724 1000 496 504 0.496
## 1725 1000 494 506 0.494
## 1726 1000 486 514 0.486
## 1727 1000 495 505 0.495
## 1728 1000 503 497 0.503
## 1729 1000 493 507 0.493
## 1730 1000 475 525 0.475
## 1731 1000 493 507 0.493
## 1732 1000 501 499 0.501
## 1733 1000 511 489 0.511
## 1734 1000 487 513 0.487
## 1735 1000 480 520 0.480
## 1736 1000 471 529 0.471
## 1737 1000 482 518 0.482
## 1738 1000 527 473 0.527
## 1739 1000 494 506 0.494
## 1740 1000 500 500 0.500
## 1741 1000 527 473 0.527
## 1742 1000 521 479 0.521
## 1743 1000 498 502 0.498
## 1744 1000 487 513 0.487
## 1745 1000 488 512 0.488
## 1746 1000 534 466 0.534
## 1747 1000 492 508 0.492
## 1748 1000 491 509 0.491
## 1749 1000 516 484 0.516
## 1750 1000 496 504 0.496
## 1751 1000 496 504 0.496
## 1752 1000 497 503 0.497
## 1753 1000 508 492 0.508
## 1754 1000 488 512 0.488
## 1755 1000 526 474 0.526
## 1756 1000 495 505 0.495
## 1757 1000 510 490 0.510
## 1758 1000 504 496 0.504
## 1759 1000 496 504 0.496
## 1760 1000 501 499 0.501
## 1761 1000 562 438 0.562
## 1762 1000 505 495 0.505
## 1763 1000 493 507 0.493
## 1764 1000 513 487 0.513
## 1765 1000 506 494 0.506
## 1766 1000 517 483 0.517
## 1767 1000 499 501 0.499
## 1768 1000 489 511 0.489
## 1769 1000 488 512 0.488
## 1770 1000 516 484 0.516
## 1771 1000 479 521 0.479
## 1772 1000 494 506 0.494
## 1773 1000 506 494 0.506
## 1774 1000 497 503 0.497
## 1775 1000 485 515 0.485
## 1776 1000 482 518 0.482
## 1777 1000 518 482 0.518
## 1778 1000 483 517 0.483
## 1779 1000 496 504 0.496
## 1780 1000 480 520 0.480
## 1781 1000 487 513 0.487
## 1782 1000 511 489 0.511
## 1783 1000 507 493 0.507
## 1784 1000 474 526 0.474
## 1785 1000 506 494 0.506
## 1786 1000 493 507 0.493
## 1787 1000 497 503 0.497
## 1788 1000 507 493 0.507
## 1789 1000 535 465 0.535
## 1790 1000 501 499 0.501
## 1791 1000 514 486 0.514
## 1792 1000 528 472 0.528
## 1793 1000 486 514 0.486
## 1794 1000 482 518 0.482
## 1795 1000 484 516 0.484
## 1796 1000 503 497 0.503
## 1797 1000 528 472 0.528
## 1798 1000 507 493 0.507
## 1799 1000 478 522 0.478
## 1800 1000 536 464 0.536
## 1801 1000 500 500 0.500
## 1802 1000 489 511 0.489
## 1803 1000 527 473 0.527
## 1804 1000 487 513 0.487
## 1805 1000 515 485 0.515
## 1806 1000 481 519 0.481
## 1807 1000 496 504 0.496
## 1808 1000 489 511 0.489
## 1809 1000 524 476 0.524
## 1810 1000 513 487 0.513
## 1811 1000 503 497 0.503
## 1812 1000 493 507 0.493
## 1813 1000 495 505 0.495
## 1814 1000 506 494 0.506
## 1815 1000 513 487 0.513
## 1816 1000 485 515 0.485
## 1817 1000 498 502 0.498
## 1818 1000 483 517 0.483
## 1819 1000 502 498 0.502
## 1820 1000 501 499 0.501
## 1821 1000 498 502 0.498
## 1822 1000 505 495 0.505
## 1823 1000 495 505 0.495
## 1824 1000 517 483 0.517
## 1825 1000 504 496 0.504
## 1826 1000 499 501 0.499
## 1827 1000 496 504 0.496
## 1828 1000 499 501 0.499
## 1829 1000 481 519 0.481
## 1830 1000 496 504 0.496
## 1831 1000 488 512 0.488
## 1832 1000 492 508 0.492
## 1833 1000 495 505 0.495
## 1834 1000 528 472 0.528
## 1835 1000 520 480 0.520
## 1836 1000 516 484 0.516
## 1837 1000 496 504 0.496
## 1838 1000 493 507 0.493
## 1839 1000 511 489 0.511
## 1840 1000 491 509 0.491
## 1841 1000 469 531 0.469
## 1842 1000 487 513 0.487
## 1843 1000 490 510 0.490
## 1844 1000 475 525 0.475
## 1845 1000 491 509 0.491
## 1846 1000 510 490 0.510
## 1847 1000 491 509 0.491
## 1848 1000 512 488 0.512
## 1849 1000 503 497 0.503
## 1850 1000 485 515 0.485
## 1851 1000 508 492 0.508
## 1852 1000 497 503 0.497
## 1853 1000 512 488 0.512
## 1854 1000 511 489 0.511
## 1855 1000 506 494 0.506
## 1856 1000 516 484 0.516
## 1857 1000 499 501 0.499
## 1858 1000 499 501 0.499
## 1859 1000 490 510 0.490
## 1860 1000 488 512 0.488
## 1861 1000 499 501 0.499
## 1862 1000 522 478 0.522
## 1863 1000 464 536 0.464
## 1864 1000 487 513 0.487
## 1865 1000 512 488 0.512
## 1866 1000 504 496 0.504
## 1867 1000 504 496 0.504
## 1868 1000 501 499 0.501
## 1869 1000 526 474 0.526
## 1870 1000 534 466 0.534
## 1871 1000 503 497 0.503
## 1872 1000 496 504 0.496
## 1873 1000 497 503 0.497
## 1874 1000 517 483 0.517
## 1875 1000 508 492 0.508
## 1876 1000 501 499 0.501
## 1877 1000 482 518 0.482
## 1878 1000 498 502 0.498
## 1879 1000 510 490 0.510
## 1880 1000 503 497 0.503
## 1881 1000 502 498 0.502
## 1882 1000 476 524 0.476
## 1883 1000 507 493 0.507
## 1884 1000 500 500 0.500
## 1885 1000 493 507 0.493
## 1886 1000 507 493 0.507
## 1887 1000 500 500 0.500
## 1888 1000 509 491 0.509
## 1889 1000 510 490 0.510
## 1890 1000 500 500 0.500
## 1891 1000 512 488 0.512
## 1892 1000 527 473 0.527
## 1893 1000 484 516 0.484
## 1894 1000 458 542 0.458
## 1895 1000 497 503 0.497
## 1896 1000 502 498 0.502
## 1897 1000 496 504 0.496
## 1898 1000 505 495 0.505
## 1899 1000 513 487 0.513
## 1900 1000 543 457 0.543
## 1901 1000 506 494 0.506
## 1902 1000 508 492 0.508
## 1903 1000 528 472 0.528
## 1904 1000 472 528 0.472
## 1905 1000 492 508 0.492
## 1906 1000 493 507 0.493
## 1907 1000 482 518 0.482
## 1908 1000 501 499 0.501
## 1909 1000 504 496 0.504
## 1910 1000 504 496 0.504
## 1911 1000 499 501 0.499
## 1912 1000 491 509 0.491
## 1913 1000 507 493 0.507
## 1914 1000 463 537 0.463
## 1915 1000 499 501 0.499
## 1916 1000 486 514 0.486
## 1917 1000 483 517 0.483
## 1918 1000 515 485 0.515
## 1919 1000 475 525 0.475
## 1920 1000 495 505 0.495
## 1921 1000 495 505 0.495
## 1922 1000 504 496 0.504
## 1923 1000 484 516 0.484
## 1924 1000 523 477 0.523
## 1925 1000 491 509 0.491
## 1926 1000 472 528 0.472
## 1927 1000 498 502 0.498
## 1928 1000 514 486 0.514
## 1929 1000 473 527 0.473
## 1930 1000 485 515 0.485
## 1931 1000 502 498 0.502
## 1932 1000 491 509 0.491
## 1933 1000 499 501 0.499
## 1934 1000 498 502 0.498
## 1935 1000 492 508 0.492
## 1936 1000 502 498 0.502
## 1937 1000 477 523 0.477
## 1938 1000 518 482 0.518
## 1939 1000 520 480 0.520
## 1940 1000 469 531 0.469
## 1941 1000 500 500 0.500
## 1942 1000 509 491 0.509
## 1943 1000 482 518 0.482
## 1944 1000 519 481 0.519
## 1945 1000 488 512 0.488
## 1946 1000 488 512 0.488
## 1947 1000 517 483 0.517
## 1948 1000 510 490 0.510
## 1949 1000 519 481 0.519
## 1950 1000 486 514 0.486
## 1951 1000 496 504 0.496
## 1952 1000 503 497 0.503
## 1953 1000 503 497 0.503
## 1954 1000 528 472 0.528
## 1955 1000 506 494 0.506
## 1956 1000 484 516 0.484
## 1957 1000 504 496 0.504
## 1958 1000 494 506 0.494
## 1959 1000 492 508 0.492
## 1960 1000 487 513 0.487
## 1961 1000 518 482 0.518
## 1962 1000 475 525 0.475
## 1963 1000 498 502 0.498
## 1964 1000 473 527 0.473
## 1965 1000 509 491 0.509
## 1966 1000 459 541 0.459
## 1967 1000 508 492 0.508
## 1968 1000 499 501 0.499
## 1969 1000 514 486 0.514
## 1970 1000 511 489 0.511
## 1971 1000 504 496 0.504
## 1972 1000 490 510 0.490
## 1973 1000 518 482 0.518
## 1974 1000 487 513 0.487
## 1975 1000 498 502 0.498
## 1976 1000 515 485 0.515
## 1977 1000 521 479 0.521
## 1978 1000 492 508 0.492
## 1979 1000 522 478 0.522
## 1980 1000 498 502 0.498
## 1981 1000 510 490 0.510
## 1982 1000 495 505 0.495
## 1983 1000 529 471 0.529
## 1984 1000 483 517 0.483
## 1985 1000 505 495 0.505
## 1986 1000 497 503 0.497
## 1987 1000 493 507 0.493
## 1988 1000 491 509 0.491
## 1989 1000 525 475 0.525
## 1990 1000 490 510 0.490
## 1991 1000 498 502 0.498
## 1992 1000 524 476 0.524
## 1993 1000 506 494 0.506
## 1994 1000 485 515 0.485
## 1995 1000 502 498 0.502
## 1996 1000 491 509 0.491
## 1997 1000 479 521 0.479
## 1998 1000 524 476 0.524
## 1999 1000 505 495 0.505
## 2000 1000 507 493 0.507
## [1] 499.9055
And now the same histogram, but with proportions:
8.7 But who cares about coin flips?
It’s fair to ask why we go to all this trouble to talk about coin flips. The most pressing research questions of our day do not involve people sitting around and flipping coins, either physically or virtually.
But now substitute “heads” and “tails” with “cancer” and “no cancer”. Or “guilty” and “not guilty”. Or “shot” and “not shot”. The fact is that many important issues are measured as variables with two possible outcomes. There is some underlying “probability” of seeing one outcome over the other. (It doesn’t have to be 50% like the coin.) Statistical methods—including simulation—can say a lot about what we “expect” to see if these outcomes are truly random. More importantly, when we see outcomes that aren’t consistent with our simulations, we may wonder if there is some underlying mechanism that may be not so random after all. It may not look like it on first blush, but this idea is at the core of the scientific method.
For example, let’s suppose that 85% of U.S. adults support some form of background checks for gun buyers.11 Now, imagine we went out and surveyed a random group of people and asked them a simple yes/no question about their support for background checks. What might we see?
Let’s simulate. Imagine flipping a coin, but instead of coming up heads 50% of the time, suppose it were possible for the coin to come up heads 85% of the time.12 A sequence of heads and tails with this weird coin would be much like randomly surveying people and asking them about background checks.
We can make a “virtual” weird coin with the rflip
command by specifying how often we want heads to come up.
##
## Flipping 1 coin [ Prob(Heads) = 0.85 ] ...
##
## H
##
## Number of Heads: 1 [Proportion Heads: 1]
If we flip our weird coin a bunch of times, we can see that our coin is not fair. Indeed, it appears to come up heads way more often than not:
##
## Flipping 100 coins [ Prob(Heads) = 0.85 ] ...
##
## H H H H T H H H H H H H H T H H H H H H H H H H H H H T H H H H H H H H
## H H T H H H H H H H H H H H H H H H H H H H H H T H H H H H H H H H H T
## H H H H H H H H T H H H H T H H H T H T H H H H H H H H
##
## Number of Heads: 90 [Proportion Heads: 0.9]
The results from the above code can be thought of as a survey of 100 random U.S. adults about their support for background checks for purchasing guns. “Heads” means “supports” and “tails” means “opposes.” If the majority of Americans support background checks, then we will come across more people in our survey who tell us they support background checks. This shows up in our simulation as the appearance of more heads than tails.
Note that there is no guarantee that our sample will have exactly 85% heads. In fact, it doesn’t; it has 90% heads.
Again, keep in mind that we’re simulating the act of obtaining a random sample of 100 U.S. adults. If we get a different sample, we’ll get different results. (We set a different seed here. That ensures that this code chunk is randomly different from the one above.)
##
## Flipping 100 coins [ Prob(Heads) = 0.85 ] ...
##
## H H H H H H H H T H H H T T T T T H H H H H H H H H T T T H H T H H H H
## T T H H H H T H H H H H H H H H H T H T H H H H H H H H H H H H H H H H
## T H H H T H H H H H H T H H H H H H H H H H H H T H H H
##
## Number of Heads: 81 [Proportion Heads: 0.81]
See, this time, only 81% came up heads, even though we expected 85%. That’s how randomness works.
Exercise 6(a)
Now imagine that 2000 people all go out and conduct surveys of 100 random U.S. adults, asking them about their support for background checks. Write some R code that simulates this. Plot a histogram of the results. (Hint: you’ll need do(2000) *
in there.) Use the proportion of supporters (prop
), not the raw count of supporters (heads
).
8.8 Sampling variability
We’ve seen that taking repeated samples (using the do
command) leads to lots of different outcomes. That is randomness in action. We don’t expect the results of each survey to be exactly the same every time the survey is administered.
But despite this randomness, there is an interesting pattern that we can observe. It has to do with the number of times we flip the coin. Since we’re using coin flips to simulate the act of conducting a survey, the number of coin flips is playing the role of the sample size. In other words, if we want to simulate a survey of U.S. adults with a sample size of 100, we simulate that by flipping 100 coins.
Exercise 7
Go back and look at all the examples above. What do you notice about the range of values on the x-axis when the sample size is small versus large? (In other words, in what way are the histograms different when using rflip(10, prob = ...)
or rflip(100, prob = ...)
versus rflip(1000, prob = ...)
? It’s easier to compare histograms one to another when looking at the proportions instead of the raw head counts because proportions are always on the same scale from 0 to 1.)
Please write up your answer here.
8.9 Conclusion
Simulation is a tool for understanding what happens when a statistical process is repeated many times in a randomized way. The availability of fast computer processing makes simulation easy and accessible. Eventually, the goal will be to use simulation to answer important questions about data and the processes in the world that generate data. This is possible because, despite the ubiquitous presence of randomness, a certain order emerges when the number of samples is large enough. Even though there is sampling variability (different random outcomes each time we sample), there are patterns in that variability that can be exploited to make predictions.
There is some theory behind choosing the number of times we need to simulate, but we’re not going to get into all that.↩︎
This is likely close to the truth. See this article: https://iop.harvard.edu/get-involved/harvard-political-review/vast-majority-americans-support-universal-background-checks↩︎
The idea of a “weighted” coin that can do this comes up all the time in probability and statistics courses, but it seems that it’s not likely one could actually manufacture a coin that came up heads more or less than 50% of the time when flipped. See this paper for more details: http://www.stat.columbia.edu/~gelman/research/published/diceRev2.pdf↩︎