Chapter 19 Inference for one mean

2.0

Functions introduced in this chapter

rnorm

19.1 Introduction

In this chapter, we’ll learn about the Student t distribution and use it to perform a t test for a single mean.

19.1.1 Install new packages

There are no new packages used in this chapter.

19.1.2 Download the R notebook file

Check the upper-right corner in RStudio to make sure you’re in your intro_stats project. Then click on the following link to download this chapter as an R notebook file (.Rmd).

Once the file is downloaded, move it to your project folder in RStudio and open it there.

19.1.3 Restart R and run all chunks

In RStudio, select “Restart R and Run All Chunks” from the “Run” menu.

19.2 Load packages

We load the standard tidyverse and infer packages as well as the mosaic package to run some simulation. The openintro package contains the teacher data and the hsb2 data.

library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6      ✔ purrr   0.3.4 
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.0      ✔ stringr 1.4.1 
## ✔ readr   2.1.2      ✔ forcats 0.5.2 
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(infer)
library(mosaic)
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Attaching package: 'mosaic'
## 
## The following object is masked from 'package:Matrix':
## 
##     mean
## 
## The following objects are masked from 'package:infer':
## 
##     prop_test, t_test
## 
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## 
## The following object is masked from 'package:purrr':
## 
##     cross
## 
## The following object is masked from 'package:ggplot2':
## 
##     stat
## 
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## 
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum
library(openintro)
## Loading required package: airports
## Loading required package: cherryblossom
## Loading required package: usdata
## 
## Attaching package: 'openintro'
## 
## The following object is masked from 'package:mosaic':
## 
##     dotPlot
## 
## The following objects are masked from 'package:lattice':
## 
##     ethanol, lsegments

19.3 Simulating means

Systolic blood pressure (SBP) for women in the U.S. and Canada follows a normal distribution with a mean of 114 and a standard deviation of 14.

Suppose we gather a random sample of 4 women and measure their SBP. We can simulate doing that with the rnorm command:

set.seed(5151977)
SBP_sample <- rnorm(4, mean = 114, sd = 14)
SBP_sample
## [1]  99.75130 126.47739  99.53632 115.05247

We summarize our sample by taking the mean and standard deviation:

mean(SBP_sample)
## [1] 110.2044
sd(SBP_sample)
## [1] 13.05615

The sample mean \(\bar{y}\) = 110.2043696 is somewhat close to the true population mean \(\mu = 114\) and the sample standard deviation \(s\) = 13.0561519 is somewhat close to the true population standard deviation \(\sigma = 14\). (\(\mu\) is the Greek letter “mu” and \(\sigma\) is the Greek letter “sigma”.)

Let’s simulate lots of samples of size 4. For each sample, we calculate the sample mean.

set.seed(5151977)
sims <- do(2000) * mean(rnorm(4, mean = 114, sd = 14))
sims
##           mean
## 1    110.95524
## 2    111.06853
## 3    109.91266
## 4    113.51487
## 5    114.84292
## 6    124.12671
## 7    110.52277
## 8    122.91483
## 9    113.79958
## 10   121.52306
## 11   119.45527
## 12   130.95196
## 13   106.25140
## 14   119.48189
## 15   122.95412
## 16   111.36293
## 17   115.26561
## 18   120.00887
## 19   111.12422
## 20   125.11449
## 21   112.54356
## 22   121.05007
## 23   111.92577
## 24   112.37685
## 25   108.60242
## 26   112.14135
## 27   121.03786
## 28   102.21504
## 29   131.42457
## 30   115.75208
## 31   118.57539
## 32   107.75367
## 33   113.73938
## 34   107.48598
## 35   104.02251
## 36   110.26283
## 37   114.03591
## 38   105.89310
## 39   112.81019
## 40   123.99549
## 41   102.07213
## 42   102.65507
## 43   119.93490
## 44   123.99603
## 45   119.72605
## 46   122.57296
## 47   112.79102
## 48   108.88674
## 49   109.46094
## 50   111.52494
## 51   106.51913
## 52   118.92374
## 53   122.65041
## 54   106.33611
## 55   114.84009
## 56   119.94925
## 57    87.48567
## 58   107.67256
## 59   112.29705
## 60   114.49032
## 61   106.00521
## 62   103.61574
## 63   114.44472
## 64   124.40115
## 65   107.25545
## 66   106.18013
## 67   107.38138
## 68   115.50453
## 69   118.83450
## 70   109.98443
## 71   133.63093
## 72   118.93599
## 73   112.55365
## 74   122.22781
## 75   119.94346
## 76   120.08051
## 77   115.73125
## 78    99.12175
## 79   110.20178
## 80    97.50553
## 81   126.13150
## 82   110.10237
## 83   116.45862
## 84   118.18392
## 85   120.15207
## 86   107.32720
## 87   117.33775
## 88    96.64247
## 89   109.86058
## 90   124.84727
## 91   109.67761
## 92   117.45921
## 93   110.36776
## 94   118.71447
## 95   122.94817
## 96   113.04646
## 97   116.69160
## 98   113.14800
## 99   117.60656
## 100  116.98939
## 101  113.87627
## 102  117.60049
## 103  119.06600
## 104  126.74302
## 105  116.53015
## 106  121.92932
## 107  107.90235
## 108  118.06294
## 109  116.88269
## 110  119.81950
## 111  127.56483
## 112  109.67205
## 113  113.93574
## 114  110.89664
## 115  115.59765
## 116   98.08517
## 117  108.69878
## 118  114.50676
## 119  109.82143
## 120  118.93792
## 121  121.50253
## 122  101.73570
## 123  117.77834
## 124  103.81164
## 125  101.48508
## 126  127.18256
## 127  119.56654
## 128  120.47221
## 129  123.70693
## 130  125.67436
## 131  124.50634
## 132   99.11626
## 133  113.36051
## 134  107.59688
## 135  119.69572
## 136  113.57789
## 137  114.00803
## 138  114.95061
## 139  117.94756
## 140  106.20955
## 141  112.69388
## 142  115.82052
## 143  124.41148
## 144  119.49821
## 145  114.44646
## 146  101.22920
## 147  109.58204
## 148  109.16187
## 149  105.36936
## 150  111.49145
## 151  118.48739
## 152  101.84622
## 153  115.05308
## 154  121.74454
## 155  115.84609
## 156  114.60402
## 157  121.84957
## 158  118.38499
## 159  117.98274
## 160  121.94268
## 161  112.60397
## 162  106.21758
## 163  121.90313
## 164  122.05917
## 165  128.85365
## 166  106.67919
## 167  120.88093
## 168  105.27210
## 169  133.73894
## 170  112.95960
## 171  114.62501
## 172  118.79292
## 173  114.05784
## 174  106.07207
## 175  122.25110
## 176  124.99923
## 177  111.32837
## 178  112.67882
## 179  118.10980
## 180  113.55150
## 181  109.94996
## 182  130.17665
## 183  117.41869
## 184  112.29039
## 185  115.18728
## 186  119.10711
## 187  121.18710
## 188  116.40250
## 189  123.58668
## 190  117.05543
## 191  114.30052
## 192  120.59040
## 193  108.93992
## 194  116.69512
## 195  123.65056
## 196  120.25289
## 197  119.10736
## 198  121.35013
## 199  108.22576
## 200  123.96013
## 201  120.50076
## 202  109.45569
## 203  124.60173
## 204  109.20374
## 205  109.14185
## 206  111.64284
## 207  127.80637
## 208   97.05353
## 209  104.42525
## 210  108.70502
## 211  123.53495
## 212  111.92085
## 213  103.79728
## 214  109.04242
## 215  101.15528
## 216  108.99493
## 217  115.66033
## 218  104.27866
## 219  127.74945
## 220  119.18990
## 221   99.37513
## 222  119.24557
## 223  107.03566
## 224  118.83983
## 225  118.84264
## 226  124.91099
## 227  103.66402
## 228  109.91857
## 229  116.49506
## 230  112.01135
## 231  110.40098
## 232  100.23115
## 233  115.89741
## 234  120.00895
## 235  110.26257
## 236  104.91429
## 237  121.20485
## 238  127.85001
## 239  121.99891
## 240  116.34753
## 241  113.57648
## 242  113.91281
## 243  117.83396
## 244  117.19323
## 245  123.04011
## 246  111.43295
## 247  108.88549
## 248  101.10892
## 249  108.54658
## 250  128.54127
## 251  132.02932
## 252  117.36163
## 253  100.19385
## 254  113.30224
## 255  120.65156
## 256  104.76686
## 257  118.55390
## 258  118.08333
## 259  118.85312
## 260  116.92587
## 261  125.34601
## 262  113.04661
## 263  127.01136
## 264  116.97079
## 265  115.09776
## 266  120.77965
## 267  112.78021
## 268  120.98030
## 269   96.97945
## 270  109.06035
## 271  113.31895
## 272  118.24567
## 273  128.56256
## 274  122.71663
## 275  122.79106
## 276  107.69711
## 277  122.51593
## 278  121.62137
## 279  115.44487
## 280  114.65932
## 281  100.87231
## 282  118.26446
## 283  108.46425
## 284  115.83714
## 285  121.39197
## 286  110.09557
## 287  113.85471
## 288  117.69545
## 289  116.22425
## 290  120.78184
## 291  126.43991
## 292  103.53681
## 293  116.32864
## 294  108.06495
## 295  106.65624
## 296  120.69772
## 297  119.37433
## 298  100.02332
## 299  118.59332
## 300  119.53438
## 301  107.11014
## 302  111.97493
## 303  103.47491
## 304  111.99805
## 305  118.71416
## 306  116.33954
## 307  125.49563
## 308  107.78016
## 309  102.12925
## 310  112.12212
## 311  117.51136
## 312  110.08975
## 313  114.72259
## 314  120.56031
## 315  122.04100
## 316  111.17129
## 317  116.39056
## 318  111.50435
## 319  104.30895
## 320  101.31131
## 321  114.53301
## 322  113.94972
## 323  116.04217
## 324  112.54460
## 325  113.52116
## 326  110.60055
## 327  117.48808
## 328  116.50048
## 329  119.46474
## 330  123.91257
## 331  111.94294
## 332  102.98073
## 333  109.80824
## 334  106.57737
## 335  113.14494
## 336  100.74728
## 337  100.16375
## 338  115.02875
## 339  110.51485
## 340  110.32509
## 341  120.91380
## 342  118.33534
## 343  111.63758
## 344  110.58353
## 345  118.32547
## 346  106.03945
## 347  114.78878
## 348   95.12731
## 349  115.50274
## 350  123.32999
## 351  104.88001
## 352  127.10250
## 353  127.14507
## 354  108.64777
## 355  112.02036
## 356  120.33362
## 357  120.23128
## 358  111.15694
## 359  123.51130
## 360  116.82204
## 361  104.68623
## 362  114.13924
## 363  111.40374
## 364  109.04713
## 365  118.19404
## 366  126.41994
## 367  119.38439
## 368  112.72901
## 369  106.14565
## 370  115.27480
## 371  112.79306
## 372  111.38774
## 373  115.34948
## 374  105.88397
## 375  127.93875
## 376  106.13218
## 377  103.12044
## 378  117.84138
## 379  117.41520
## 380  125.36306
## 381  105.82215
## 382  127.51360
## 383  103.99779
## 384  113.93482
## 385  104.04683
## 386  106.93355
## 387  107.05414
## 388  104.54855
## 389  125.37328
## 390  112.21401
## 391  113.13934
## 392  125.71206
## 393  105.71941
## 394  112.40308
## 395  108.61642
## 396  107.48780
## 397  118.09707
## 398  125.35679
## 399   97.45444
## 400  100.10943
## 401  116.58694
## 402  106.78057
## 403  111.91079
## 404  116.75726
## 405  108.17398
## 406   99.58362
## 407  114.57293
## 408  109.85168
## 409  121.84334
## 410  107.86493
## 411  127.12080
## 412  124.86587
## 413   99.53627
## 414  116.46358
## 415  124.81236
## 416  111.73796
## 417  108.87264
## 418  117.94757
## 419  115.56643
## 420  123.96318
## 421  113.77360
## 422  119.94670
## 423  108.32990
## 424  124.58518
## 425  114.06451
## 426  110.54113
## 427  114.85524
## 428  117.35423
## 429  125.28117
## 430  114.69364
## 431  106.83007
## 432  110.89630
## 433  115.50097
## 434  121.92301
## 435  118.78799
## 436  113.84525
## 437  120.64767
## 438  109.36883
## 439  121.13011
## 440  113.52213
## 441  115.16573
## 442  123.03323
## 443  111.16598
## 444  110.23718
## 445  121.01684
## 446  104.57516
## 447  114.23794
## 448  116.48334
## 449  112.93738
## 450  116.97262
## 451  123.01939
## 452  103.86612
## 453  108.16585
## 454  117.46619
## 455  102.80921
## 456  111.45025
## 457  113.71313
## 458  115.76154
## 459  107.26893
## 460  122.26012
## 461  136.24026
## 462  123.72361
## 463  110.92298
## 464  100.08531
## 465  112.24392
## 466  110.54597
## 467  111.99873
## 468  112.89430
## 469  112.26102
## 470  117.39683
## 471  117.50764
## 472  106.53525
## 473  105.80527
## 474  115.67630
## 475  100.35041
## 476  113.07986
## 477  114.39667
## 478  118.53729
## 479  125.13422
## 480  116.61993
## 481  113.62256
## 482  117.60229
## 483  121.42464
## 484  123.01585
## 485  110.59016
## 486  118.49153
## 487  116.60030
## 488  114.53784
## 489  126.91723
## 490   96.27709
## 491  103.54786
## 492  105.34090
## 493  113.60563
## 494  119.49589
## 495  120.85729
## 496  111.34998
## 497  108.19074
## 498  105.44374
## 499  111.48404
## 500  115.11209
## 501  113.31679
## 502  107.93316
## 503  121.78264
## 504  110.72774
## 505  108.02673
## 506  113.40761
## 507  121.72887
## 508  112.27018
## 509  105.09043
## 510  121.76014
## 511  116.73332
## 512  121.76908
## 513  117.22549
## 514  108.76471
## 515  107.87862
## 516  117.75028
## 517  110.29232
## 518  116.54346
## 519  109.25235
## 520  113.03419
## 521  117.64512
## 522  121.47154
## 523  114.08779
## 524  106.18617
## 525  119.07393
## 526  106.86533
## 527  115.46940
## 528  101.70763
## 529   97.54206
## 530  110.64455
## 531  107.06610
## 532  112.42027
## 533  118.73436
## 534  111.71727
## 535  104.05510
## 536  129.54831
## 537  117.09248
## 538  124.54404
## 539  116.33296
## 540  123.40549
## 541  102.44298
## 542  111.77241
## 543  120.33461
## 544  117.91417
## 545  108.52797
## 546  126.19165
## 547  113.31332
## 548  107.87823
## 549  119.66154
## 550  111.16370
## 551  109.34024
## 552  117.21184
## 553  119.04455
## 554  117.19549
## 555  107.11711
## 556  106.42320
## 557  121.77364
## 558  119.82572
## 559  113.46557
## 560  115.69528
## 561  110.62206
## 562  122.38456
## 563  122.98836
## 564  108.48447
## 565  106.09706
## 566  116.32697
## 567  116.35801
## 568  124.40857
## 569  116.82206
## 570  114.09462
## 571  115.40778
## 572  116.96016
## 573   98.85140
## 574  135.20693
## 575  119.75133
## 576  114.80116
## 577  108.22753
## 578  117.61364
## 579  116.36189
## 580  109.92622
## 581  111.91415
## 582  116.15821
## 583  105.58993
## 584  108.08802
## 585  117.67850
## 586  111.13633
## 587  132.24823
## 588  110.85715
## 589   87.83593
## 590  125.64538
## 591  109.59319
## 592  101.12824
## 593  113.94740
## 594  124.31554
## 595  118.67357
## 596  111.03314
## 597  121.03873
## 598  110.29637
## 599  112.24814
## 600  119.22314
## 601  124.26302
## 602  112.70908
## 603   97.54202
## 604  112.54098
## 605  117.30295
## 606  113.61166
## 607  126.07466
## 608  108.19994
## 609  117.06018
## 610  117.99884
## 611  124.48122
## 612  120.04676
## 613  120.79039
## 614  113.56916
## 615  106.28474
## 616  121.85101
## 617  121.80984
## 618  107.49041
## 619  110.51965
## 620  122.22094
## 621  112.96608
## 622  107.79417
## 623  109.04927
## 624  100.50307
## 625  117.33123
## 626  125.95204
## 627  122.03779
## 628  116.83302
## 629  110.13387
## 630  118.26938
## 631  123.07836
## 632  106.96144
## 633  119.32938
## 634  114.60838
## 635  104.26998
## 636  117.78356
## 637  112.10798
## 638  116.92210
## 639  122.20747
## 640  103.41158
## 641  104.35021
## 642  111.00875
## 643  126.15944
## 644  120.43646
## 645  103.26239
## 646  121.87818
## 647  109.79967
## 648  111.64820
## 649  116.67954
## 650  105.66557
## 651  112.75183
## 652  121.22979
## 653  114.24457
## 654  103.54787
## 655  101.95563
## 656  103.88058
## 657  124.59750
## 658  113.34938
## 659  104.30297
## 660  124.46201
## 661  114.08120
## 662  126.73495
## 663  117.66581
## 664   99.67641
## 665  107.33070
## 666  107.93766
## 667  113.07169
## 668  114.49677
## 669  109.61490
## 670  102.14626
## 671  118.50619
## 672  109.63734
## 673  125.07082
## 674  106.13135
## 675  120.89767
## 676  118.49616
## 677  121.94440
## 678  116.67561
## 679  110.53741
## 680  109.26362
## 681  121.35528
## 682  120.08566
## 683  106.30738
## 684  105.02832
## 685  116.33245
## 686  113.73313
## 687  121.30509
## 688  127.22500
## 689  115.56041
## 690  121.46557
## 691  118.54388
## 692  113.01171
## 693  130.12382
## 694  120.11217
## 695  105.06264
## 696  107.70540
## 697  116.29044
## 698  107.87553
## 699   99.27654
## 700  111.77306
## 701  112.65223
## 702  109.55930
## 703  116.77807
## 704  109.78229
## 705  119.13192
## 706  113.67539
## 707  118.85713
## 708  121.56431
## 709  116.28196
## 710  119.04540
## 711  109.45345
## 712  114.95872
## 713  115.29909
## 714  112.15066
## 715  116.73322
## 716  114.44525
## 717  111.12546
## 718  112.27558
## 719  113.56506
## 720  114.10238
## 721  100.49031
## 722  113.25783
## 723  111.85214
## 724  116.96490
## 725  108.83318
## 726  114.62116
## 727  106.61273
## 728  109.46670
## 729  123.27669
## 730  120.57396
## 731  103.87767
## 732  106.94421
## 733  108.34143
## 734  116.92814
## 735  110.42256
## 736  109.48496
## 737  116.48718
## 738  120.68135
## 739  111.55352
## 740   93.88022
## 741  107.22182
## 742  124.23818
## 743  113.48573
## 744  114.27485
## 745  111.79580
## 746  113.71912
## 747  110.32422
## 748  122.13764
## 749  111.87946
## 750  127.66771
## 751  117.10136
## 752  115.48153
## 753  110.11040
## 754  112.85943
## 755  105.63839
## 756  108.13891
## 757  120.85112
## 758  117.88342
## 759  111.69815
## 760  119.76180
## 761  134.35632
## 762  109.77925
## 763  119.67662
## 764  120.93808
## 765  109.29167
## 766  122.32388
## 767  109.15243
## 768  117.27312
## 769  108.50841
## 770  111.76736
## 771  124.59931
## 772  112.06909
## 773  112.19180
## 774  114.38893
## 775  120.83596
## 776  107.44710
## 777  121.63091
## 778  114.90195
## 779  101.89752
## 780  111.35287
## 781  117.87474
## 782  101.78017
## 783  110.58340
## 784  125.94421
## 785  123.96811
## 786  113.46274
## 787  121.76359
## 788  110.06839
## 789  102.44855
## 790  111.36805
## 791  112.06821
## 792  107.07052
## 793  109.29914
## 794  123.65203
## 795  105.85683
## 796  111.35574
## 797  125.17185
## 798  100.63606
## 799  104.69494
## 800  116.48918
## 801   97.65872
## 802  110.70257
## 803   99.96854
## 804  118.34047
## 805   98.87707
## 806  106.96261
## 807  121.66617
## 808  120.60981
## 809  113.29107
## 810  111.57254
## 811  108.33329
## 812  122.84750
## 813  116.70816
## 814  123.37593
## 815  105.93103
## 816  120.38120
## 817  117.05266
## 818  117.38626
## 819  111.90372
## 820  124.06628
## 821  108.95796
## 822  119.86165
## 823  117.27993
## 824  120.37133
## 825  128.86851
## 826  109.71630
## 827  111.71660
## 828  110.05162
## 829  113.51702
## 830  108.89157
## 831  107.63479
## 832  108.94371
## 833  118.58841
## 834  114.21696
## 835  111.22482
## 836  122.48018
## 837  115.61993
## 838  109.40633
## 839  104.44660
## 840  111.94576
## 841  127.03510
## 842  119.93454
## 843  111.68510
## 844  120.58653
## 845  108.03814
## 846  113.34691
## 847  106.62631
## 848  110.40374
## 849  122.61251
## 850  114.44325
## 851  104.69718
## 852  106.56099
## 853  127.06369
## 854  125.45967
## 855  114.71837
## 856  117.62471
## 857  120.52498
## 858  116.44214
## 859  107.40783
## 860  114.50855
## 861  115.58185
## 862  115.97269
## 863  114.63601
## 864   99.79335
## 865  109.73196
## 866  108.74116
## 867  102.28575
## 868  107.32777
## 869  117.85405
## 870  105.90642
## 871  112.89515
## 872  134.41702
## 873  112.23719
## 874  104.71251
## 875  118.32708
## 876  104.18355
## 877  128.33015
## 878  116.90507
## 879  120.39067
## 880  126.98088
## 881  116.34320
## 882  109.82074
## 883  123.30521
## 884  106.80564
## 885  118.13258
## 886   97.52207
## 887  112.72367
## 888  115.18713
## 889  117.35420
## 890  118.52945
## 891  112.23963
## 892  112.33860
## 893  117.71835
## 894  113.51003
## 895  102.75577
## 896  120.41303
## 897  113.45623
## 898  106.96468
## 899  118.39375
## 900  112.78840
## 901  111.73239
## 902  100.42487
## 903  117.71950
## 904  111.69543
## 905  102.44391
## 906  110.05755
## 907  116.58030
## 908  116.50860
## 909  120.90876
## 910  120.61065
## 911  114.09941
## 912  108.47591
## 913  114.89356
## 914  111.55837
## 915  125.64014
## 916  120.40303
## 917  115.25511
## 918  113.53279
## 919  108.45547
## 920  104.94686
## 921  113.27691
## 922  113.20703
## 923  108.27743
## 924  118.50170
## 925  116.89015
## 926  111.98375
## 927  116.81695
## 928  122.73135
## 929  103.39012
## 930  117.62376
## 931  112.30233
## 932  113.45888
## 933  116.66527
## 934  118.67719
## 935  114.26432
## 936  122.97697
## 937  125.19933
## 938  118.29743
## 939  110.50635
## 940  115.82745
## 941  121.11219
## 942  113.55447
## 943  117.57714
## 944  112.28155
## 945  122.27081
## 946  106.57600
## 947  109.08308
## 948  117.50010
## 949  122.11137
## 950  122.16193
## 951  121.44458
## 952  117.33063
## 953  123.51882
## 954  121.94215
## 955  118.96786
## 956  114.31738
## 957  107.41746
## 958  113.77130
## 959  111.35407
## 960  107.59777
## 961  109.19277
## 962  127.13358
## 963  100.17054
## 964  120.18044
## 965  117.28016
## 966  109.87820
## 967  118.51631
## 968  108.74053
## 969  107.78547
## 970   95.13907
## 971  108.20715
## 972  118.80471
## 973  118.20027
## 974  113.92949
## 975  130.31542
## 976  114.68755
## 977  103.50685
## 978  109.87666
## 979  117.27346
## 980  113.62313
## 981  106.39070
## 982  113.30711
## 983  110.87394
## 984  125.48873
## 985  110.72711
## 986  112.07703
## 987  106.68431
## 988  105.44745
## 989  110.80564
## 990  109.69366
## 991  113.20748
## 992  114.57158
## 993  110.00366
## 994  106.38230
## 995  113.29721
## 996  121.58053
## 997  116.29353
## 998  118.41607
## 999  100.96017
## 1000 108.10720
## 1001 130.32826
## 1002 120.17653
## 1003 115.76080
## 1004 104.11123
## 1005 111.41403
## 1006 110.55287
## 1007 109.45958
## 1008 117.71342
## 1009 106.94909
## 1010 119.46146
## 1011 111.08046
## 1012 117.20810
## 1013 121.10426
## 1014 113.24686
## 1015 116.21945
## 1016 103.16162
## 1017 109.84911
## 1018 119.90426
## 1019 116.16652
## 1020 115.20789
## 1021 115.37497
## 1022 109.81569
## 1023 123.91835
## 1024 118.28780
## 1025 117.16872
## 1026 114.28380
## 1027 117.47676
## 1028 127.92206
## 1029 120.61338
## 1030 119.82510
## 1031 117.25111
## 1032 109.81241
## 1033 110.86057
## 1034  99.17878
## 1035 105.74768
## 1036 124.20102
## 1037 125.06881
## 1038 113.94185
## 1039 119.46429
## 1040 110.56440
## 1041 103.70747
## 1042 114.42114
## 1043 119.36101
## 1044 114.96361
## 1045 127.03302
## 1046 110.93612
## 1047 121.32774
## 1048 125.58299
## 1049 113.66107
## 1050 127.45563
## 1051 121.29938
## 1052 115.91205
## 1053 125.66449
## 1054 117.38157
## 1055 113.01597
## 1056 113.25878
## 1057 127.29828
## 1058 125.32686
## 1059 109.75475
## 1060 112.37593
## 1061 107.38527
## 1062 115.14333
## 1063 111.45853
## 1064 120.82785
## 1065 105.20941
## 1066 108.54900
## 1067 114.02939
## 1068 118.37864
## 1069 102.11114
## 1070 116.64180
## 1071 108.40744
## 1072 117.18136
## 1073 108.19509
## 1074 107.14360
## 1075 116.90222
## 1076 104.15030
## 1077 100.26139
## 1078 105.81597
## 1079 113.34212
## 1080 111.94739
## 1081 121.14570
## 1082 118.44696
## 1083 107.34237
## 1084 117.24360
## 1085 107.60404
## 1086 118.85538
## 1087 106.40600
## 1088 122.85663
## 1089 104.07504
## 1090 113.22320
## 1091 114.97140
## 1092 118.09961
## 1093 117.03136
## 1094 107.14066
## 1095 123.18202
## 1096 112.09900
## 1097 107.97797
## 1098 111.92963
## 1099 111.93445
## 1100 128.90915
## 1101 115.24124
## 1102 111.91907
## 1103  99.85996
## 1104 113.54477
## 1105 108.94829
## 1106 128.90917
## 1107 107.32140
## 1108 120.24379
## 1109 105.11357
## 1110 111.05352
## 1111 120.79707
## 1112 115.00555
## 1113 111.01941
## 1114 111.84065
## 1115 114.34084
## 1116 105.92397
## 1117 111.70965
## 1118 119.16662
## 1119 111.73266
## 1120 105.54516
## 1121 113.79357
## 1122 117.76457
## 1123 102.44144
## 1124 103.29840
## 1125 115.05315
## 1126 111.03007
## 1127 116.53265
## 1128 107.45888
## 1129 115.61642
## 1130 118.95059
## 1131 111.51774
## 1132 117.40121
## 1133 112.47827
## 1134 125.66763
## 1135 119.79011
## 1136 111.11484
## 1137 114.83657
## 1138 105.88437
## 1139 108.63627
## 1140 116.41257
## 1141 110.12795
## 1142 123.79206
## 1143 118.45650
## 1144 113.94787
## 1145 102.62388
## 1146 111.09719
## 1147 118.36165
## 1148 112.94732
## 1149 108.43720
## 1150 115.28137
## 1151 119.46534
## 1152 106.99961
## 1153 119.62218
## 1154 118.95339
## 1155 117.88381
## 1156 119.81714
## 1157 100.78069
## 1158 131.23269
## 1159 107.50770
## 1160 111.55628
## 1161 108.06604
## 1162 106.77945
## 1163 113.80202
## 1164 105.77542
## 1165 116.13634
## 1166 119.07567
## 1167 111.49404
## 1168 100.29369
## 1169 116.34176
## 1170 113.23696
## 1171 115.80735
## 1172 116.01929
## 1173 117.67437
## 1174 115.35731
## 1175 117.38773
## 1176 109.38466
## 1177 118.08699
## 1178 114.07595
## 1179 111.67969
## 1180 111.36346
## 1181 111.30338
## 1182 112.80356
## 1183 113.69834
## 1184 124.86923
## 1185 108.54999
## 1186 113.09888
## 1187 104.47500
## 1188 116.31281
## 1189 122.09594
## 1190 112.86609
## 1191  98.80012
## 1192 106.70147
## 1193 117.85387
## 1194 112.45122
## 1195 116.41153
## 1196 117.87522
## 1197 109.68763
## 1198 111.52220
## 1199 107.07082
## 1200 111.32972
## 1201 112.26528
## 1202 111.10109
## 1203 114.52308
## 1204 112.31476
## 1205 117.47502
## 1206 116.52666
## 1207 120.81598
## 1208 116.33793
## 1209 112.74801
## 1210 127.52139
## 1211 121.52660
## 1212 105.79790
## 1213 117.85491
## 1214  97.34274
## 1215 111.33687
## 1216 107.07140
## 1217 126.33510
## 1218 110.39163
## 1219 113.56320
## 1220 115.64189
## 1221 113.85816
## 1222 104.43309
## 1223 111.79075
## 1224 110.78703
## 1225 110.67750
## 1226 116.06451
## 1227 108.96969
## 1228 108.15498
## 1229 112.92344
## 1230 107.14717
## 1231 115.92812
## 1232 113.04762
## 1233 109.43041
## 1234 114.23104
## 1235 119.86467
## 1236 126.11721
## 1237 128.23638
## 1238 113.65702
## 1239 108.32141
## 1240 114.21378
## 1241 107.63545
## 1242 117.78865
## 1243 129.03578
## 1244 115.47835
## 1245 123.17433
## 1246 115.30096
## 1247 112.59428
## 1248 105.57202
## 1249 111.88252
## 1250 110.88433
## 1251 114.84263
## 1252 107.40725
## 1253 111.47207
## 1254 120.21071
## 1255 111.89527
## 1256 118.35163
## 1257 117.88052
## 1258 116.34688
## 1259 112.34029
## 1260 103.99297
## 1261 123.56539
## 1262 111.97952
## 1263 116.69397
## 1264 116.34907
## 1265 116.79808
## 1266 101.95297
## 1267 117.86954
## 1268 108.23262
## 1269 132.30578
## 1270 120.46958
## 1271 114.94029
## 1272 120.20149
## 1273 100.30723
## 1274 129.85113
## 1275 115.81816
## 1276 117.02384
## 1277 120.27815
## 1278 121.85546
## 1279 103.90078
## 1280 122.19051
## 1281 116.57745
## 1282 109.95009
## 1283 105.23317
## 1284 116.93435
## 1285 111.57148
## 1286 119.13922
## 1287 125.54779
## 1288 109.10373
## 1289 110.70050
## 1290 105.11765
## 1291 109.87981
## 1292 118.19105
## 1293 114.29103
## 1294 106.15203
## 1295 102.50338
## 1296 109.96188
## 1297 108.15569
## 1298 113.50295
## 1299 111.48597
## 1300 121.54557
## 1301 110.93386
## 1302 103.80765
## 1303 119.33408
## 1304 102.02712
## 1305 118.55922
## 1306 107.06847
## 1307 108.79602
## 1308 116.50134
## 1309 118.38453
## 1310 118.79259
## 1311 106.82584
## 1312 102.34545
## 1313 130.01962
## 1314 109.81604
## 1315 119.12788
## 1316 110.37244
## 1317  95.99251
## 1318 119.60626
## 1319 119.44452
## 1320 123.12385
## 1321 119.36772
## 1322 116.31835
## 1323 111.28271
## 1324 122.10482
## 1325 114.14807
## 1326 127.06285
## 1327 118.53668
## 1328 115.02598
## 1329 108.22127
## 1330 116.81348
## 1331 112.81088
## 1332 118.34949
## 1333 114.29864
## 1334 123.59628
## 1335 119.70373
## 1336 117.51460
## 1337 127.34626
## 1338 113.07955
## 1339 110.45866
## 1340 119.92736
## 1341 117.28564
## 1342 108.09077
## 1343 104.62263
## 1344 105.07416
## 1345 104.88394
## 1346 110.06062
## 1347 108.95208
## 1348 132.09090
## 1349 107.30942
## 1350 112.99771
## 1351 117.46157
## 1352 117.16070
## 1353 109.21347
## 1354 112.24620
## 1355 112.61793
## 1356 121.18151
## 1357 103.94874
## 1358 113.37763
## 1359 122.73741
## 1360 115.32113
## 1361 111.77167
## 1362 110.99553
## 1363 121.94203
## 1364 110.34328
## 1365 105.30604
## 1366 116.09629
## 1367 102.05262
## 1368 109.95499
## 1369 119.25235
## 1370 118.15268
## 1371 112.32892
## 1372 105.47613
## 1373 111.76131
## 1374 100.76358
## 1375 109.93715
## 1376 100.96184
## 1377 125.21202
## 1378 110.37468
## 1379 124.80175
## 1380 109.96470
## 1381 115.14373
## 1382 121.15185
## 1383 115.30872
## 1384 118.92581
## 1385 110.46122
## 1386 111.08989
## 1387 105.44359
## 1388 117.45240
## 1389 109.14479
## 1390 115.13759
## 1391 110.39389
## 1392 115.01801
## 1393 108.04009
## 1394 120.60450
## 1395 118.56538
## 1396 117.14946
## 1397 120.93808
## 1398 114.59867
## 1399 118.94317
## 1400 117.58117
## 1401 110.22179
## 1402 106.15499
## 1403 113.10225
## 1404 110.11491
## 1405 102.21913
## 1406 105.08358
## 1407 103.49084
## 1408 100.73561
## 1409 107.55905
## 1410 106.16039
## 1411 129.10527
## 1412 108.82824
## 1413 121.21923
## 1414 106.53840
## 1415 102.58445
## 1416 118.46176
## 1417 127.49937
## 1418 106.71160
## 1419 122.65682
## 1420 114.51373
## 1421 121.56658
## 1422 113.11742
## 1423 122.15894
## 1424 115.77924
## 1425 111.80496
## 1426 112.46076
## 1427 109.06221
## 1428 113.28135
## 1429 110.47385
## 1430 122.36573
## 1431 118.63585
## 1432 111.77054
## 1433 110.29033
## 1434 114.62444
## 1435 108.00727
## 1436 114.92012
## 1437 108.95962
## 1438 102.97774
## 1439 119.22310
## 1440 120.43765
## 1441 108.49537
## 1442 110.92757
## 1443 107.97688
## 1444 116.12105
## 1445 101.42974
## 1446 108.56945
## 1447 123.53596
## 1448 113.23547
## 1449 111.06023
## 1450 123.54516
## 1451 116.48961
## 1452 114.14523
## 1453 122.20655
## 1454 103.98278
## 1455 121.67445
## 1456  99.28229
## 1457 114.72245
## 1458 123.91351
## 1459 125.14108
## 1460 113.67279
## 1461 111.81406
## 1462 113.03427
## 1463 112.31009
## 1464 123.09269
## 1465 118.35434
## 1466 114.97969
## 1467 116.46900
## 1468 110.49186
## 1469 106.00737
## 1470 111.91734
## 1471 123.08918
## 1472 120.01327
## 1473 108.06641
## 1474 109.38992
## 1475 109.96492
## 1476 123.97694
## 1477 109.80171
## 1478 108.36984
## 1479 120.85546
## 1480 118.34128
## 1481 117.86559
## 1482 116.26975
## 1483 108.53301
## 1484 118.59358
## 1485 116.85862
## 1486 116.77585
## 1487 120.74770
## 1488 107.73169
## 1489 119.16405
## 1490 108.31084
## 1491 116.06004
## 1492 112.46070
## 1493 116.88191
## 1494 111.17441
## 1495 104.23124
## 1496 103.50059
## 1497 101.43330
## 1498 113.01985
## 1499 110.29478
## 1500 115.67790
## 1501 118.72363
## 1502 120.64310
## 1503 109.50663
## 1504 129.39962
## 1505 110.08841
## 1506 125.67869
## 1507 112.94456
## 1508 130.30593
## 1509 110.96469
## 1510 105.34348
## 1511 113.96547
## 1512 108.46737
## 1513 122.71343
## 1514 102.94200
## 1515 124.77048
## 1516 116.56960
## 1517 122.55535
## 1518 116.02211
## 1519 114.43897
## 1520 121.18077
## 1521 119.74168
## 1522 118.83429
## 1523 121.15772
## 1524 114.06548
## 1525 106.46666
## 1526 119.30676
## 1527 133.72091
## 1528 123.13389
## 1529 104.38520
## 1530 115.42896
## 1531 117.66344
## 1532 119.83591
## 1533 123.98602
## 1534 102.37509
## 1535 114.07874
## 1536 106.97540
## 1537 110.35280
## 1538 116.97690
## 1539 111.18541
## 1540 105.69587
## 1541 104.59612
## 1542 115.75452
## 1543 120.29783
## 1544 123.31126
## 1545 131.44892
## 1546 122.69949
## 1547 113.97907
## 1548 110.09498
## 1549 115.16476
## 1550 100.29843
## 1551 113.91254
## 1552 114.66159
## 1553 103.84541
## 1554 110.39713
## 1555 105.25746
## 1556 102.13013
## 1557 124.34440
## 1558 118.88271
## 1559 109.24473
## 1560 103.34364
## 1561 120.40739
## 1562 116.99994
## 1563 123.02828
## 1564 108.33611
## 1565 119.99752
## 1566 121.03319
## 1567  99.99384
## 1568 116.67556
## 1569 107.83469
## 1570 108.69174
## 1571 105.66309
## 1572 119.96092
## 1573 117.85073
## 1574 117.72457
## 1575 108.18494
## 1576 105.57252
## 1577 109.74319
## 1578 103.37063
## 1579 120.24026
## 1580 117.46247
## 1581 118.56704
## 1582 113.29901
## 1583 126.00136
## 1584 118.37080
## 1585 114.59037
## 1586 123.25053
## 1587 118.19777
## 1588 105.07041
## 1589 110.12177
## 1590 108.81398
## 1591 118.84109
## 1592 114.03587
## 1593 118.08697
## 1594 114.20147
## 1595 115.63426
## 1596 115.48063
## 1597 119.33707
## 1598 113.05393
## 1599 110.55678
## 1600 121.74840
## 1601 123.84287
## 1602 103.31903
## 1603 107.83778
## 1604 117.31981
## 1605 100.17249
## 1606 123.31731
## 1607 113.20546
## 1608 110.73020
## 1609 126.64609
## 1610 102.29858
## 1611 109.91586
## 1612 108.10079
## 1613 111.44146
## 1614 122.73071
## 1615 115.16343
## 1616 109.03564
## 1617 119.87047
## 1618 106.47498
## 1619 109.46235
## 1620 101.66624
## 1621 118.03451
## 1622 116.10188
## 1623 108.65630
## 1624 113.09310
## 1625 104.06154
## 1626 101.97438
## 1627 116.78661
## 1628 110.29435
## 1629 123.46893
## 1630 116.59034
## 1631 102.98659
## 1632 110.18205
## 1633 109.23006
## 1634 120.82451
## 1635 121.75575
## 1636 112.22303
## 1637 105.56302
## 1638 121.47504
## 1639 110.05367
## 1640 104.12317
## 1641 113.38777
## 1642 111.67334
## 1643 114.42323
## 1644 106.43060
## 1645 135.61538
## 1646 115.60082
## 1647 117.35365
## 1648 113.11384
## 1649 117.95815
## 1650 112.93363
## 1651 113.47685
## 1652 105.97033
## 1653 114.98154
## 1654 107.74614
## 1655 116.06752
## 1656 122.10031
## 1657 112.99138
## 1658 114.29996
## 1659 106.96841
## 1660 108.60291
## 1661 121.43145
## 1662  92.95222
## 1663 113.02822
## 1664 111.52353
## 1665 105.84010
## 1666 129.57170
## 1667 116.08035
## 1668 117.68832
## 1669 116.61900
## 1670 122.81734
## 1671 115.13204
## 1672 114.64356
## 1673 116.38536
## 1674 109.62207
## 1675 110.92888
## 1676 114.36763
## 1677 105.78363
## 1678 116.03262
## 1679 101.17360
## 1680 118.69656
## 1681 114.24099
## 1682 113.32326
## 1683 103.40502
## 1684 112.39048
## 1685 113.95558
## 1686 115.26227
## 1687 124.42804
## 1688 118.27150
## 1689 123.43397
## 1690 124.46988
## 1691 110.85936
## 1692 114.07836
## 1693 112.95339
## 1694 120.96305
## 1695 122.99706
## 1696 115.55654
## 1697 115.87079
## 1698 115.29694
## 1699 125.24085
## 1700 128.62481
## 1701 108.18660
## 1702 105.87661
## 1703 104.39514
## 1704 113.98015
## 1705 119.94162
## 1706 120.89582
## 1707 115.58448
## 1708 124.34802
## 1709 119.27451
## 1710 125.94165
## 1711 118.74313
## 1712 118.66193
## 1713 117.66496
## 1714 107.85271
## 1715 116.25929
## 1716 118.91040
## 1717 112.54798
## 1718 108.35888
## 1719 106.78994
## 1720 122.41502
## 1721 112.78309
## 1722 111.49801
## 1723 110.25142
## 1724 100.29204
## 1725 109.43258
## 1726 109.33677
## 1727 108.22743
## 1728 121.09013
## 1729 126.03049
## 1730 114.12910
## 1731 114.46407
## 1732 101.81167
## 1733 109.25527
## 1734 117.17836
## 1735 114.15739
## 1736 106.89497
## 1737 113.97003
## 1738 109.90265
## 1739 120.60851
## 1740 126.19142
## 1741 121.11972
## 1742 111.88430
## 1743 105.94220
## 1744 113.77476
## 1745 111.42531
## 1746 114.39007
## 1747 115.78462
## 1748 112.93819
## 1749 118.81692
## 1750 118.76391
## 1751 123.01901
## 1752 111.04410
## 1753 118.35484
## 1754 110.54607
## 1755 110.85959
## 1756 105.96548
## 1757 116.78229
## 1758 108.15793
## 1759 110.14765
## 1760 109.63972
## 1761 112.02199
## 1762 114.85539
## 1763 117.21206
## 1764 115.58728
## 1765  99.67584
## 1766 116.18988
## 1767 106.56255
## 1768 110.93185
## 1769 120.20929
## 1770 110.24173
## 1771 115.38537
## 1772 123.69769
## 1773 115.34699
## 1774 111.34985
## 1775 109.82229
## 1776 115.89685
## 1777 118.99048
## 1778 118.77597
## 1779 111.15591
## 1780 116.88276
## 1781 116.84949
## 1782 107.54415
## 1783 115.28064
## 1784 113.47038
## 1785 110.72918
## 1786 111.94738
## 1787 107.27141
## 1788 115.04275
## 1789  96.72293
## 1790 122.32240
## 1791 104.26958
## 1792 123.25807
## 1793 115.92358
## 1794 117.70162
## 1795 118.16755
## 1796 118.03596
## 1797 120.34519
## 1798 104.31188
## 1799 132.04806
## 1800 117.71137
## 1801 113.05951
## 1802 110.26341
## 1803 127.21428
## 1804 117.25141
## 1805 108.35096
## 1806 110.27506
## 1807 111.23149
## 1808 124.83066
## 1809 123.39050
## 1810 106.58225
## 1811 109.74921
## 1812 109.04106
## 1813 125.43409
## 1814 110.93092
## 1815 111.74767
## 1816 101.40743
## 1817 116.73829
## 1818 102.78626
## 1819 112.74032
## 1820 105.15150
## 1821 106.97115
## 1822 120.82963
## 1823 115.17882
## 1824 118.71154
## 1825 124.19609
## 1826 109.75987
## 1827 120.38832
## 1828 121.82306
## 1829 106.27523
## 1830 128.54055
## 1831 117.93971
## 1832 106.59459
## 1833 119.75123
## 1834 117.02807
## 1835 117.46441
## 1836 117.25068
## 1837 112.56719
## 1838 108.33113
## 1839 107.22700
## 1840 114.48208
## 1841 110.34761
## 1842 117.18823
## 1843 124.86804
## 1844 115.99743
## 1845 118.54041
## 1846 114.31177
## 1847 122.35911
## 1848 115.61515
## 1849 111.68315
## 1850 119.04893
## 1851 105.15279
## 1852 104.46286
## 1853 108.21831
## 1854 120.25840
## 1855 113.72293
## 1856 116.31275
## 1857 110.21878
## 1858 104.04796
## 1859 116.13271
## 1860  99.73447
## 1861 114.76161
## 1862 123.04099
## 1863 114.48397
## 1864 119.41272
## 1865 114.43066
## 1866 116.57754
## 1867 104.68885
## 1868 102.26670
## 1869 111.31379
## 1870 107.89620
## 1871 107.26937
## 1872 128.56182
## 1873 112.31984
## 1874 117.48175
## 1875 111.82601
## 1876 121.53766
## 1877 108.59204
## 1878 114.00073
## 1879 109.15453
## 1880 115.40349
## 1881 120.02438
## 1882 120.00529
## 1883 114.15522
## 1884  97.21296
## 1885 118.74600
## 1886 110.07800
## 1887 105.74195
## 1888 109.99513
## 1889 115.58094
## 1890  98.49195
## 1891 119.22469
## 1892 108.36079
## 1893 123.17149
## 1894 122.71776
## 1895 119.61528
## 1896 113.61297
## 1897 104.29065
## 1898 119.35944
## 1899 114.59634
## 1900 114.87640
## 1901 114.83493
## 1902 120.75232
## 1903 116.33686
## 1904 112.85593
## 1905 108.99668
## 1906 119.80091
## 1907 107.51762
## 1908 117.00237
## 1909 125.47799
## 1910 109.23858
## 1911  99.10170
## 1912 113.58951
## 1913 110.50543
## 1914 120.26970
## 1915 112.06393
## 1916 101.04741
## 1917 112.63951
## 1918 113.25368
## 1919 121.02941
## 1920 120.40065
## 1921 102.51873
## 1922 122.20321
## 1923 121.08449
## 1924 119.55367
## 1925 115.73619
## 1926 108.47358
## 1927 113.91919
## 1928 115.65892
## 1929 117.53470
## 1930 113.44030
## 1931 112.06709
## 1932 106.90271
## 1933 113.75108
## 1934 118.57237
## 1935 115.23998
## 1936 108.66065
## 1937 108.24943
## 1938 112.21938
## 1939 124.59338
## 1940 113.36595
## 1941 107.43284
## 1942 115.07636
## 1943 116.41288
## 1944 114.93979
## 1945 112.58356
## 1946 118.89955
## 1947 113.45179
## 1948 109.08609
## 1949 122.58892
## 1950 101.93728
## 1951 106.47563
## 1952 120.28890
## 1953 109.49638
## 1954 104.30374
## 1955 112.77269
## 1956 124.76056
## 1957 118.72269
## 1958 123.78044
## 1959 110.63524
## 1960 109.31897
## 1961 107.73594
## 1962 116.17672
## 1963 105.96558
## 1964 119.74607
## 1965 118.69882
## 1966 115.85835
## 1967 104.62583
## 1968 113.57872
## 1969 128.22431
## 1970 115.12682
## 1971 114.34633
## 1972 106.33976
## 1973 112.85725
## 1974 109.54481
## 1975 126.89872
## 1976 106.20579
## 1977 114.33387
## 1978 118.06756
## 1979 120.88291
## 1980 112.68291
## 1981 126.43337
## 1982 110.43387
## 1983 114.83281
## 1984 116.18950
## 1985 105.62630
## 1986 122.38782
## 1987 118.93003
## 1988 113.00455
## 1989 121.08291
## 1990 124.71230
## 1991 111.14368
## 1992 111.19670
## 1993 114.69397
## 1994 113.91546
## 1995 111.82721
## 1996 112.65771
## 1997 118.70725
## 1998 109.79392
## 1999 114.41826
## 2000 114.76945

Again, we see that the sample means are close to 114, but there is some variability. Naturally, not every sample is going to have an average of exactly 114. So how much variability do we expect? Let’s graph and find out. We’re going to set the x-axis manually so that we can do some comparisons later.

ggplot(sims, aes(x = mean)) +
    geom_histogram(binwidth = 1) +
    scale_x_continuous(limits = c(86, 142),
                       breaks = c(93, 100, 107, 114, 121, 128, 135))
## Warning: Removed 2 rows containing missing values (geom_bar).

Most sample means are around 114, but there is a good range of possibilities from around 93 to 135. The population standard deviation \(\sigma\) is 14, but the standard deviation in this graph is clearly much smaller than that. (A large majority of the samples are within 14 of the mean!)

With some fancy mathematics, one can show that the standard deviation of this sampling distribution is not \(\sigma\), but rather \(\sigma/\sqrt{n}\). In other words, this sampling distribution of the mean has a standard error of

\[ \frac{\sigma}{\sqrt{n}} = \frac{14}{\sqrt{4}} = 7. \]

This makes sense: as the sample size increases, we expect the sample mean to be more and more accurate, so the standard error should shrink with large sample sizes.

Let’s re-scale the y-axis to use percentages instead of counts. Then we should be able to superimpose the normal model \(N(114, 7)\) to check visually that it’s the right fit.

# Don't worry about the syntax here.
# You won't need to know how to do this on your own.
ggplot(sims, aes(x = mean)) +
    geom_histogram(aes(y = ..density..), binwidth = 1) +
    scale_x_continuous(limits = c(86, 142),
                       breaks = c(93, 100, 107, 114, 121, 128, 135)) +
    stat_function(fun = dnorm, args = list(mean = 114, sd = 7),
                  color = "red", size = 1.5)
## Warning: Removed 2 rows containing missing values (geom_bar).

Looks pretty good!

All we do now is convert everything to z scores. In other words, suppose we sample 4 individuals from a population distributed according to the normal model \(N(0, 1)\). Now the standard error of the sampling distribution is

\[ \frac{\sigma}{\sqrt{n}} = \frac{1}{\sqrt{4}} = 0.5. \]

The following code will accomplish all of this. (Don’t worry about the messy syntax. All I’m doing here is making sure that this graph looks exactly the same as the previous graph, except now centered at \(\mu = 0\) instead of \(\mu = 114\).)

# Don't worry about the syntax here.
# You won't need to know how to do this on your own.
sims_z <- data.frame(mean = scale(sims$mean, center = 114, scale = 14))
ggplot(sims_z, aes(x = mean)) +
    geom_histogram(aes(y = ..density..), binwidth = 1/14) +
    scale_x_continuous(limits = c(-2, 2),
                       breaks = c(-1.5, -1, -0.5, 0, 0.5, 1, 1.5)) +
    stat_function(fun = dnorm, args = list(mean = 0, sd = 0.5),
                  color = "red",  size = 1.5)
## Warning: Removed 2 rows containing missing values (geom_bar).

Remember that this is not the standard normal model \(N(0, 1)\). The standard deviation in the graph above is not 1, but 0.5 because that is the standard error when using samples of size 4. (\(1/\sqrt{4} = 0.5\).)

19.4 Unknown standard errors

If we want to run a hypothesis test, we will have a null hypothesis about the true value of the population mean \(\mu\). For example,

\[ H_{0}: \mu = 114 \]

Now we gather a sample and compute the sample mean, say 110.2043696. We would like to be able to compare the sample mean \(\bar{y}\) to the hypothesized value 114 using a z score:

\[ z = \frac{(\bar{y} - \mu)}{\sigma/\sqrt{n}} = \frac{(110.2 - 114)}{\sigma/\sqrt{4}}. \]

However, we have a problem: we usually don’t know the true value of \(\sigma\). In our SBP example, we do happen to know it’s 14, but we won’t know this for a general research question.

The best we can do with a sample is calculate this z score replacing the unknown \(\sigma\) with the sample standard deviation \(s\), 13.0561519. We’ll call this a “t score” instead of a “z score”:

\[ t = \frac{(\bar{y} - \mu)}{s/\sqrt{n}} = \frac{(110.2 - 114)}{13.06/\sqrt{4}} = -0.58. \]

The problem is that \(s\) is not a perfect estimate of \(\sigma\). We saw earlier that \(s\) is usually close to \(\sigma\), but \(s\) has its own sampling variability. That means that our earlier simulation in which we assumed that \(\sigma\) was known and equal to 14 was wrong for the type of situation that will arise when we run a hypothesis test. How wrong was it?

19.5 Simulating t scores

Let’s run the simulation again, but this time with the added uncertainty of using \(s\) to estimate \(\sigma\).

The first step is to write a little function of our own to compute simulated t scores. This function will take a sample of size \(n\) from the true population \(N(\mu, \sigma)\), calculate the sample mean and sample standard deviation, then compute the t score. Don’t worry: you won’t be required to do anything like this on your own.

# Don't worry about the syntax here.
# You won't need to know how to do this on your own.
sim_t <- function(n, mu, sigma) {
    sample_values <- rnorm(n, mean = mu, sd = sigma)
    y_bar <- mean(sample_values)
    s <- sd(sample_values)
    t <- (y_bar - mu)/(s / sqrt(n))
}

Now we can simulate doing this 2000 times.

set.seed(5151977)
sims_t <- do(2000) * sim_t(4, mu = 114, sigma = 14) 
sims_t
##              sim_t
## 1      1.670726734
## 2     -0.975666678
## 3     -0.278839393
## 4      0.907808022
## 5     -1.527274531
## 6     -1.717671837
## 7     -0.610956296
## 8     -0.177107883
## 9     -0.081578742
## 10    -0.150764283
## 11     0.105561464
## 12     0.989851233
## 13     0.754578374
## 14    -0.221752375
## 15    -0.569806798
## 16     1.056144154
## 17     0.709520796
## 18     1.786249608
## 19    -0.022957371
## 20    -0.479076521
## 21     2.196497891
## 22    -0.057126903
## 23     0.723176732
## 24     0.462163070
## 25     2.305842397
## 26    -0.541132956
## 27    -1.155518891
## 28     1.893602331
## 29     3.587253178
## 30    -1.329845154
## 31     1.786070559
## 32     0.205368769
## 33    -0.617185683
## 34     1.408927566
## 35     0.174600728
## 36    -0.585585461
## 37     0.975358819
## 38     0.867186495
## 39    -0.509037457
## 40     0.463270308
## 41     2.961196587
## 42     0.250917786
## 43    -0.151400364
## 44     2.379911294
## 45     0.965542692
## 46    -1.639114331
## 47    -0.187393864
## 48     0.702999822
## 49    -1.649486008
## 50     0.642256403
## 51    -0.445978914
## 52    -0.870684799
## 53    -0.506327234
## 54     0.515425890
## 55     1.188525622
## 56     1.173749591
## 57    -3.089680034
## 58     1.479209494
## 59    10.039858675
## 60    -1.865677247
## 61     0.208720956
## 62     1.698415163
## 63     0.874459927
## 64    -0.414113539
## 65    -2.079229096
## 66    -0.641514036
## 67    -0.046016401
## 68    -2.051611648
## 69    -1.116638893
## 70    -2.568290582
## 71    -3.634987999
## 72     0.131241299
## 73    -0.317803823
## 74    -1.063949859
## 75     0.004811193
## 76     4.439627383
## 77    -1.364313839
## 78     1.645804106
## 79    -0.201914744
## 80     0.504043393
## 81     1.440774874
## 82    -3.291032994
## 83    -1.551130801
## 84    -0.802710562
## 85    -4.861382113
## 86     1.016265268
## 87     1.080518333
## 88     2.980709799
## 89     4.326429336
## 90     0.458414619
## 91     2.037994906
## 92    -1.820144738
## 93     1.040068322
## 94     2.555396424
## 95    -0.478768875
## 96    -0.929751963
## 97    -0.508981112
## 98    -0.569059363
## 99    -1.094024179
## 100    0.110893966
## 101   -0.923379631
## 102    0.408635917
## 103   -0.521992962
## 104    2.636311764
## 105    0.636091866
## 106    0.859720275
## 107    1.253116033
## 108    0.874350704
## 109   -0.867757352
## 110   -1.337827858
## 111    0.156515269
## 112   -2.023417372
## 113    0.789119890
## 114    0.664206505
## 115   -5.013338827
## 116    1.080852724
## 117   -0.468189050
## 118   -0.592941304
## 119   -0.224440854
## 120    1.566295593
## 121    0.104289555
## 122   -1.197675728
## 123   -1.007030300
## 124    0.407430926
## 125   -1.942399658
## 126   -3.000766684
## 127    0.061485310
## 128   -1.592080649
## 129    1.051971725
## 130    3.007244391
## 131   -0.926063447
## 132    0.360010372
## 133   -1.154431763
## 134    0.837885024
## 135   -0.865787271
## 136   -1.185354554
## 137    0.295746913
## 138   -0.396571358
## 139    0.887971205
## 140   -1.027778834
## 141   -1.056473957
## 142   -0.790085592
## 143    2.166777070
## 144    0.009600946
## 145    0.761096684
## 146   -0.445841081
## 147   -0.513983827
## 148    0.831912239
## 149    0.716585444
## 150   -0.341729523
## 151    1.959676409
## 152    0.501861848
## 153    1.419772119
## 154   -1.145028443
## 155    0.404685855
## 156    0.572805957
## 157   -1.261116341
## 158   -1.077860929
## 159   -0.340670950
## 160    3.191331484
## 161   -2.919014184
## 162    1.362479919
## 163    1.326437044
## 164   -0.619316503
## 165   -1.330164481
## 166    0.114571544
## 167    0.275918212
## 168   -1.609972483
## 169    0.746043178
## 170    0.571191844
## 171    1.155595866
## 172    0.134574629
## 173   -1.218916492
## 174   -1.492947751
## 175    1.012713541
## 176   -0.651309215
## 177   -2.690012483
## 178    0.381110576
## 179   -0.709852732
## 180    1.127924885
## 181    2.690832381
## 182    1.716396925
## 183   -0.697362354
## 184   -0.961945375
## 185    0.746108381
## 186   -1.524226171
## 187   -0.458618707
## 188   -0.055254402
## 189    1.020115666
## 190    0.018051809
## 191    0.979239006
## 192    0.785251827
## 193   -0.178483558
## 194   -1.244265037
## 195    0.744906482
## 196   -0.491305065
## 197   -0.345225608
## 198   -0.857919408
## 199    0.767931118
## 200    0.567650649
## 201    0.285171950
## 202   -0.912431467
## 203   -0.016306668
## 204   -0.018041076
## 205    0.864570995
## 206    1.856671982
## 207    0.481038270
## 208   -1.469329052
## 209    2.623871232
## 210   -0.712124175
## 211    0.392677868
## 212   -0.960771180
## 213    1.503009840
## 214   -1.308729342
## 215   -0.714134598
## 216    0.910092338
## 217    0.687880279
## 218   -0.706690653
## 219    1.039393080
## 220    1.285188816
## 221    2.082287808
## 222    0.065838057
## 223    1.905921689
## 224    1.228140674
## 225   -0.765591982
## 226    0.605332968
## 227   -0.017615429
## 228   -0.220003147
## 229   -0.921723662
## 230   -1.408301607
## 231    0.307375781
## 232   -0.384728667
## 233   -4.815204952
## 234    0.153630251
## 235   -0.544127519
## 236   -0.012780210
## 237    0.143751438
## 238    1.320877365
## 239   -1.291725993
## 240   -0.482246881
## 241    0.752661778
## 242    0.393190471
## 243    1.179327701
## 244    0.393345460
## 245   -3.793928233
## 246    5.181415482
## 247    0.564651863
## 248   -1.295222322
## 249   -1.416412176
## 250    0.491626455
## 251   -3.145790254
## 252    0.254944191
## 253    2.515832119
## 254    0.820769536
## 255    0.645464631
## 256   -0.270108112
## 257    1.810842034
## 258    1.074959231
## 259    2.627121628
## 260    1.387446754
## 261    1.645532448
## 262   -0.384565059
## 263    5.407605220
## 264   -0.037234681
## 265   -3.045039779
## 266    0.226437021
## 267   -0.146152727
## 268    1.122665692
## 269   -0.757175673
## 270    0.183402023
## 271    0.696221348
## 272    1.020714292
## 273   -0.042622579
## 274    2.912200674
## 275    0.002357622
## 276    0.699894074
## 277    0.228627097
## 278    0.104690123
## 279    0.661475603
## 280   -0.506233167
## 281   -1.170819473
## 282    0.225067302
## 283   -0.286442271
## 284    1.034292157
## 285    0.968956715
## 286    0.269954196
## 287    1.606642913
## 288   -3.655783532
## 289    1.138644184
## 290   -0.593614901
## 291    0.089351830
## 292    0.583687533
## 293   -3.131934208
## 294    4.141194148
## 295   -0.538553813
## 296   -0.195671796
## 297   -0.952154129
## 298   -0.412867470
## 299   -2.633934189
## 300    2.676456838
## 301   -0.365352128
## 302   -1.524525321
## 303    0.691961595
## 304    0.117792930
## 305   -1.966522333
## 306    2.396111764
## 307    0.158270827
## 308    0.089115221
## 309    1.095316968
## 310   -0.304480598
## 311    0.405375406
## 312   -0.525285654
## 313    0.077370056
## 314    0.322573677
## 315    0.550125365
## 316   -0.836923161
## 317    0.853458742
## 318   -0.153190888
## 319    0.426522118
## 320    0.416588871
## 321    1.665861614
## 322    0.245350802
## 323   -0.425537399
## 324   -1.399886864
## 325   -1.101151020
## 326   -0.195676630
## 327    1.374298361
## 328    0.896422001
## 329    2.034473123
## 330    1.160952652
## 331    3.155376516
## 332   -2.194758925
## 333   -1.342957830
## 334   -4.302821158
## 335    1.520409119
## 336    0.161026761
## 337   -0.858873653
## 338   -2.234242006
## 339    2.664978720
## 340   -0.325694033
## 341   -0.162072513
## 342    0.419374037
## 343    0.040149235
## 344    0.753124668
## 345    0.629287085
## 346    1.405714938
## 347    0.026077230
## 348   -2.930378187
## 349   -1.963771968
## 350   -0.275931005
## 351    1.492102994
## 352    0.422755335
## 353    1.364728012
## 354    1.755187258
## 355   -0.805715021
## 356   -3.759095166
## 357   -0.089061286
## 358    0.315457365
## 359    0.422526784
## 360   -0.066293002
## 361   -0.082625911
## 362    0.030700304
## 363   -0.572736076
## 364    0.609248931
## 365    2.237477557
## 366   -1.101976715
## 367    0.852254060
## 368    0.565323495
## 369   -0.409330460
## 370   -2.525449990
## 371    0.258198977
## 372   -0.155976375
## 373    1.713712143
## 374   -0.117440894
## 375    0.978363477
## 376   -0.295776559
## 377    0.413207781
## 378   -0.113175493
## 379    0.990093200
## 380   -0.022918883
## 381    0.549205857
## 382   -0.052790585
## 383    0.040575930
## 384   -0.292532738
## 385    0.639195715
## 386   -0.013228408
## 387   -1.881623593
## 388    1.637375851
## 389    0.774513263
## 390    0.027607716
## 391    1.527196670
## 392    1.624357378
## 393    0.931386941
## 394   -0.291767122
## 395    0.535967556
## 396    1.179312447
## 397    1.537035187
## 398  -13.448053979
## 399   -0.790771070
## 400    2.083921975
## 401    1.067028943
## 402   -0.929967278
## 403    1.547377203
## 404   -1.006231606
## 405   -0.480039478
## 406   -0.226170119
## 407    2.171631036
## 408    1.209164065
## 409   -0.634197264
## 410    1.168913920
## 411   -1.209455505
## 412    0.236386507
## 413   -0.343579491
## 414    0.561363444
## 415    1.655111860
## 416    0.133171203
## 417   -3.087070219
## 418    0.360239166
## 419   -1.218840158
## 420   -0.597036378
## 421   -1.018712950
## 422   -0.570737036
## 423    1.406809822
## 424    0.519374240
## 425   -0.480235004
## 426   -0.403953907
## 427   -0.631731646
## 428    0.186698413
## 429   -1.183039695
## 430   -0.262268243
## 431   -3.287276247
## 432    0.359065901
## 433   -0.505551442
## 434   -1.320142014
## 435    0.364654330
## 436   -1.885659342
## 437   -1.455481065
## 438    1.226269594
## 439    2.578741242
## 440    3.846835949
## 441    0.873998739
## 442    1.506630849
## 443   -2.988994581
## 444   -0.279364518
## 445    0.781926119
## 446   -0.403122067
## 447   -0.844081180
## 448   -1.042618412
## 449    0.457285503
## 450    1.431224917
## 451    1.209652423
## 452   -3.683650911
## 453    1.393770996
## 454    1.720084469
## 455   -2.230431231
## 456    0.134609859
## 457   -0.408620761
## 458    0.999314450
## 459    0.314023571
## 460   -0.372848530
## 461   -0.296119292
## 462   -0.150450959
## 463   -0.356862667
## 464    1.383127233
## 465   -1.860842022
## 466    0.605805125
## 467    0.152247462
## 468    1.007301713
## 469    0.765607632
## 470   -0.871449843
## 471   -0.648254493
## 472   -0.930334676
## 473   -1.349523909
## 474    0.905013805
## 475    1.388240794
## 476   -3.438014952
## 477    1.819725450
## 478   -0.294196927
## 479    0.986265047
## 480    0.187133472
## 481    0.552328349
## 482    2.113986298
## 483   -0.043963581
## 484    3.590154410
## 485   -0.006183080
## 486    0.106542240
## 487    0.657637300
## 488    1.235365257
## 489    0.314752210
## 490   -1.739762948
## 491    1.682474392
## 492   -1.504560768
## 493   -0.328829005
## 494   -0.301441343
## 495   -0.900253920
## 496   -0.042854272
## 497   -1.494956777
## 498    3.144871165
## 499   -0.720509064
## 500    1.813776977
## 501    1.896355460
## 502   -1.871342764
## 503    3.374841664
## 504    0.178730593
## 505    1.015395706
## 506   -0.379659796
## 507   -2.371334183
## 508    0.939599149
## 509   -0.200982845
## 510    2.343383750
## 511    1.106325676
## 512   -1.144706599
## 513   -0.916929140
## 514    1.128801935
## 515    0.641931894
## 516    0.297937489
## 517    0.406864789
## 518   -2.774211121
## 519    0.888483995
## 520   -0.629204839
## 521    1.418468601
## 522    2.036061086
## 523    1.439590335
## 524   -0.271836839
## 525   -0.175824831
## 526   -0.338271232
## 527    1.927815452
## 528    1.512879557
## 529    0.378511022
## 530    2.845399324
## 531    0.109042091
## 532   -0.083921454
## 533    0.886072470
## 534   -0.726462152
## 535   -0.558078587
## 536    0.680400472
## 537    1.802017133
## 538   -1.176004753
## 539   -1.916491222
## 540    3.333289221
## 541   -0.789699279
## 542    0.547902167
## 543   -0.088759086
## 544   -2.534317259
## 545    1.260407314
## 546    0.703405451
## 547    2.334909385
## 548   -0.457216745
## 549    0.789376258
## 550    0.455350445
## 551    0.721712170
## 552   -0.182200217
## 553   -1.515374135
## 554   -0.480620772
## 555    1.767572267
## 556    1.187207823
## 557    1.193733236
## 558    2.411566680
## 559    0.364429766
## 560   -2.219328757
## 561    0.085287694
## 562    0.531591789
## 563   -9.341273275
## 564    0.094853504
## 565    0.785084721
## 566   -0.634924243
## 567   -0.858426461
## 568    1.733052640
## 569    1.242191829
## 570    1.569673781
## 571    1.069168621
## 572   -1.521836188
## 573   -0.645073812
## 574    0.111012855
## 575   -0.040402131
## 576   -0.197406483
## 577    0.617917659
## 578    1.993147674
## 579    0.346510921
## 580    0.780109907
## 581    2.090928794
## 582   -0.004185166
## 583    1.349686189
## 584   -1.421752348
## 585   -1.601158478
## 586   -0.106531520
## 587    0.209839990
## 588   -2.045089991
## 589   -1.234780588
## 590   -0.461004820
## 591   -0.726951479
## 592   -0.423468783
## 593    0.817807644
## 594   -1.188983170
## 595    1.204874973
## 596   -0.133536565
## 597   -2.592167903
## 598   -0.699481674
## 599    0.703027125
## 600   -1.079842721
## 601    1.023587812
## 602   -0.433562412
## 603   -0.988467936
## 604   -2.670492513
## 605   -0.405054168
## 606    1.138635723
## 607   -4.547017979
## 608   -2.661674486
## 609   -0.202076484
## 610    0.708493361
## 611    2.718968071
## 612   -2.128790696
## 613    0.397993079
## 614   -0.376750125
## 615    2.464988702
## 616   -0.240840568
## 617   -0.926389805
## 618    0.722448449
## 619   -2.863359383
## 620   -0.718307594
## 621   -0.158636810
## 622   -1.000882017
## 623    0.503105050
## 624   -1.641816283
## 625   -0.391703819
## 626    1.988374553
## 627    0.373060429
## 628   -0.911117546
## 629    0.727572449
## 630   -0.906238623
## 631    2.047456061
## 632    0.260991694
## 633   -0.602544898
## 634    0.030703231
## 635    0.269998976
## 636    1.217862010
## 637   -0.747867807
## 638   -0.971587187
## 639   -0.911399652
## 640   -0.190915752
## 641   -1.106996675
## 642   -1.122937663
## 643    0.046394561
## 644   -0.121906856
## 645   -0.007749496
## 646   -1.469233577
## 647    0.246686114
## 648    0.624422073
## 649   -0.345384370
## 650   -0.910899695
## 651   -0.141657072
## 652   -0.382851158
## 653   -0.539948064
## 654   -2.496415504
## 655    0.448029935
## 656    0.551416084
## 657    0.399083932
## 658   -0.663320517
## 659    1.175334007
## 660    2.863997683
## 661    3.155675712
## 662   -2.225264098
## 663   -0.258376140
## 664    0.628880493
## 665   -1.963660373
## 666   -0.291929352
## 667   -0.535754083
## 668   -0.583840122
## 669   -1.802510943
## 670   -3.854886130
## 671   -0.225790532
## 672    0.650160540
## 673   -1.510854956
## 674   -0.602191297
## 675   -2.250936994
## 676   -2.176366039
## 677    0.199527708
## 678    0.596295642
## 679   -0.610092497
## 680    0.826319844
## 681   -0.406057365
## 682   -2.791436051
## 683    1.016551228
## 684   -3.832118970
## 685    0.474703675
## 686   -0.392337439
## 687   -0.414976635
## 688   -1.766244742
## 689   -1.252073689
## 690   -3.751861386
## 691    1.022733152
## 692    0.882560368
## 693   -1.521596800
## 694   -0.612430392
## 695    0.103893932
## 696   -2.056366948
## 697   -3.682288537
## 698   -0.770294858
## 699    0.263251202
## 700    0.698337535
## 701    0.986237494
## 702   -0.260951421
## 703   -2.285881307
## 704   -1.182122288
## 705    1.972595161
## 706   -1.750006324
## 707    2.675074586
## 708    1.974046390
## 709   -0.609375213
## 710   -0.254129786
## 711   -0.523115828
## 712   -0.072300521
## 713    0.611214547
## 714    1.596620666
## 715    2.306383754
## 716   -1.419869458
## 717   -0.376853558
## 718   -0.117070894
## 719    0.951879840
## 720   -0.790275047
## 721    0.310070760
## 722   -2.824664332
## 723   -1.379521650
## 724    1.668106523
## 725    0.022702649
## 726   -0.635325983
## 727   -0.359415998
## 728   -0.933730278
## 729   -1.140490968
## 730    0.333124364
## 731    2.425355154
## 732   -0.507101338
## 733    2.119591235
## 734   -0.232517000
## 735    0.712292633
## 736   -0.654089022
## 737   -0.223122214
## 738   -0.585805638
## 739   -0.918021780
## 740    0.700829615
## 741    0.160607319
## 742   -2.099742294
## 743   -0.200215140
## 744    0.303891449
## 745   -0.257338792
## 746   -0.328260599
## 747    0.243176094
## 748   -0.085191687
## 749   -0.871863259
## 750   -0.856766501
## 751    2.480765033
## 752   -0.278128581
## 753   -2.142664872
## 754   -0.889514335
## 755   -1.762439222
## 756    0.832724710
## 757    0.686305106
## 758   -2.104581727
## 759    0.567277023
## 760   -0.511621161
## 761    3.663699867
## 762    0.302672919
## 763   -1.140676457
## 764    0.620449123
## 765    6.421933234
## 766    0.368526892
## 767   -1.075629491
## 768    0.199039023
## 769   -0.007360514
## 770    0.462910912
## 771   -1.425572785
## 772   -0.345610941
## 773   -3.098008791
## 774   -1.958626339
## 775   -1.004602181
## 776   -0.500937913
## 777   -1.665725321
## 778   -1.090476929
## 779    2.400728753
## 780   -0.817570219
## 781   -0.660999236
## 782    0.904997966
## 783   -0.266663748
## 784    0.318056265
## 785    1.661822423
## 786   -1.640156345
## 787   -4.756981266
## 788    0.577606743
## 789   -0.308861651
## 790   -1.150271004
## 791   -1.627229938
## 792   -0.980164694
## 793   -1.066120071
## 794   -1.457905137
## 795    0.299263089
## 796   -0.349031501
## 797    1.534238168
## 798    4.097141405
## 799   -3.631181562
## 800    0.471849634
## 801   -0.988695064
## 802    0.038049817
## 803    0.396302397
## 804    0.322771451
## 805   -3.158854812
## 806   -0.986408328
## 807   -0.268281111
## 808   -2.860154110
## 809    0.362559601
## 810    0.552265488
## 811   -0.861090613
## 812    2.144060801
## 813   -2.050856369
## 814    2.955034571
## 815    0.098469162
## 816    3.093684330
## 817   -0.363663950
## 818   -0.323551241
## 819    1.680685212
## 820    0.340180512
## 821   -0.578391528
## 822    1.329548200
## 823    1.809529276
## 824    0.480853786
## 825    1.430165094
## 826    0.836765941
## 827   -2.707082948
## 828   -1.758176032
## 829    0.277666166
## 830   -0.845274445
## 831    1.891522820
## 832    0.263956829
## 833   -0.305065811
## 834   -0.444100542
## 835   -0.832133502
## 836    1.584719736
## 837    0.662723604
## 838    1.018975319
## 839    0.133071965
## 840    1.503813337
## 841    1.660804214
## 842    0.253183799
## 843   -0.101678251
## 844    0.521611568
## 845    0.729517569
## 846    2.881727329
## 847   -1.599790182
## 848   -1.095986176
## 849    0.763666941
## 850    3.268114443
## 851    0.006155721
## 852    1.841689702
## 853   -0.848697008
## 854   -0.723285225
## 855    0.141026496
## 856    1.034208339
## 857    0.570545240
## 858   -1.059584931
## 859    2.256888490
## 860    0.218106644
## 861    0.119763833
## 862    0.515775210
## 863   -2.424967874
## 864    0.434591838
## 865   -0.307744759
## 866   -2.178715876
## 867    0.323150371
## 868    1.072889144
## 869    1.362182109
## 870    0.891800388
## 871    1.255617487
## 872   -0.398858495
## 873   -0.024776420
## 874   -0.053741887
## 875    0.927007657
## 876   -0.052900194
## 877   -0.654057127
## 878    0.012066258
## 879    1.071104781
## 880    0.607243092
## 881   -0.032708359
## 882    1.006930173
## 883    0.596201330
## 884   -0.043870537
## 885    1.364728823
## 886    0.359146350
## 887   -0.798584856
## 888   -1.388090992
## 889   -0.411679156
## 890   -2.534136571
## 891    0.677893153
## 892   -2.303311561
## 893   -1.274039074
## 894  -12.876024629
## 895    0.034091110
## 896    0.870246811
## 897    0.440710160
## 898   -0.440934112
## 899   -0.204777576
## 900   -0.413712686
## 901    0.303877859
## 902    2.330154376
## 903    0.837433166
## 904    0.075834877
## 905   -1.728999374
## 906   -0.433398626
## 907   -1.237728779
## 908   -1.556073749
## 909    0.541534085
## 910   -0.412478800
## 911   -1.234088662
## 912    2.159294673
## 913   -0.300622547
## 914   -0.277136722
## 915   -0.048932774
## 916   -1.651987115
## 917    0.411460155
## 918    0.357884786
## 919   -0.959020471
## 920    0.652461567
## 921    0.869394728
## 922   -1.052548303
## 923    7.735766381
## 924   -1.858632914
## 925    1.113097838
## 926   -0.653838040
## 927   -0.363131151
## 928    2.757841945
## 929   -1.050550646
## 930    0.333704168
## 931   -0.519988076
## 932    2.784028955
## 933   -0.336139186
## 934    0.328824510
## 935   -0.793858728
## 936    1.142554991
## 937   -0.251327219
## 938   -1.782530638
## 939   -0.432279847
## 940   -0.667963498
## 941    0.453203165
## 942   -1.027829292
## 943    0.510713083
## 944    0.302223440
## 945   -0.682919997
## 946    1.267671677
## 947   -4.361014643
## 948   -1.980776525
## 949    0.389335928
## 950   -0.024079309
## 951   -7.178334583
## 952    1.422483253
## 953   -0.178124970
## 954   -0.892870249
## 955    0.053239863
## 956   -4.218448310
## 957    0.582503371
## 958    0.858599622
## 959    3.859424705
## 960    1.273544431
## 961    0.218920339
## 962   -3.964303194
## 963   -0.067487123
## 964    3.040461061
## 965    0.414046231
## 966   -1.731130480
## 967    0.595039185
## 968   -0.789370576
## 969    0.760666649
## 970    0.603495502
## 971   -0.647671226
## 972   -0.406906433
## 973    0.504575989
## 974   -0.441102622
## 975    0.204804348
## 976    1.256872540
## 977    0.073100559
## 978   -0.152361811
## 979    1.216515068
## 980   -0.566578552
## 981   -2.572576504
## 982   -1.871178048
## 983   -1.315115063
## 984   -0.464006373
## 985   -0.657201966
## 986    0.513818033
## 987   -0.038699190
## 988    0.049218763
## 989    0.666306475
## 990    1.710078219
## 991    1.308764161
## 992    2.092958839
## 993   -0.297879988
## 994    1.699824920
## 995   -0.561901059
## 996   -0.569983374
## 997   -2.062624183
## 998    0.116585032
## 999   -0.691662280
## 1000   0.454501578
## 1001   0.115681607
## 1002  -0.088101861
## 1003  -0.179487282
## 1004  -0.048374434
## 1005  -0.887888492
## 1006   0.635667878
## 1007   1.109505293
## 1008   0.915217647
## 1009  -0.484481384
## 1010  -0.059942457
## 1011  -0.851350746
## 1012  -3.352807055
## 1013  -0.062506323
## 1014  -3.077742291
## 1015   2.038985316
## 1016   1.714390486
## 1017  -0.365361959
## 1018   0.821890973
## 1019  -0.892618890
## 1020  -1.165390718
## 1021   0.949877146
## 1022   2.778657780
## 1023   0.443728775
## 1024  -1.987553453
## 1025   1.617540382
## 1026   3.012009259
## 1027   0.329400717
## 1028   3.192548011
## 1029  -0.601935849
## 1030   0.207863082
## 1031  -0.402755736
## 1032   0.975270853
## 1033   0.590699124
## 1034   0.590344288
## 1035  -0.694925060
## 1036   1.280512240
## 1037   0.320842610
## 1038   0.879190555
## 1039  -0.421247403
## 1040   0.482409584
## 1041  -0.173461502
## 1042  -0.762309013
## 1043   0.640210578
## 1044   2.921763772
## 1045   2.465518280
## 1046  -0.394633962
## 1047   0.013767253
## 1048  -0.227148899
## 1049  -1.437343875
## 1050   0.854553718
## 1051   1.444743214
## 1052   0.352313934
## 1053  -1.418960956
## 1054  -0.433563044
## 1055   0.213926802
## 1056  -2.762004219
## 1057  -1.970564368
## 1058   0.784245562
## 1059  -2.668064591
## 1060  -1.839751324
## 1061  -0.372832627
## 1062   1.577134085
## 1063  -1.534273992
## 1064   1.384169832
## 1065  -0.203847011
## 1066  -0.160122769
## 1067   0.412128639
## 1068   1.194348530
## 1069  -0.336802653
## 1070   0.521225688
## 1071  -1.209735063
## 1072  -4.336767111
## 1073   3.558754438
## 1074   0.288635772
## 1075   0.265339029
## 1076  -0.771790420
## 1077   1.870272455
## 1078  -0.968482516
## 1079   0.399774383
## 1080  -1.595623724
## 1081   2.107980908
## 1082   0.509871763
## 1083  -1.715073906
## 1084  -4.236678577
## 1085  -0.810134926
## 1086  -0.174073493
## 1087   0.483745461
## 1088  -0.715191969
## 1089   0.302479914
## 1090   1.873513177
## 1091  -0.762798444
## 1092  -0.512772225
## 1093   1.104466345
## 1094  -1.177130801
## 1095  -0.059396575
## 1096   2.819139356
## 1097  -0.466195794
## 1098  -1.161766919
## 1099   0.541721723
## 1100   0.551086355
## 1101  -0.410143789
## 1102   0.142285532
## 1103  -1.409158800
## 1104  -1.999603948
## 1105   0.383202262
## 1106   0.252158976
## 1107   0.848396573
## 1108   5.290096585
## 1109   0.268312814
## 1110   4.203285976
## 1111  -0.786918453
## 1112   0.028217665
## 1113  -0.824632477
## 1114  -0.445547860
## 1115   1.194786610
## 1116  -0.877747130
## 1117   1.531146314
## 1118  -1.405574675
## 1119  -0.095432631
## 1120   0.471860656
## 1121   0.175268260
## 1122   1.099012154
## 1123  -0.279112608
## 1124   0.842098136
## 1125   1.379772263
## 1126  -1.226010809
## 1127   1.264588931
## 1128   0.688864301
## 1129  -0.881439374
## 1130  -2.218421802
## 1131  -1.172365209
## 1132  -1.773827177
## 1133   0.649231874
## 1134   1.912460841
## 1135   0.839105311
## 1136   1.976246914
## 1137   0.798928381
## 1138  -0.541835471
## 1139   0.618860671
## 1140  -0.072465710
## 1141   0.103287755
## 1142  -2.341294296
## 1143   0.157198323
## 1144  -0.394060017
## 1145   0.261624806
## 1146   1.170755719
## 1147  -1.229135173
## 1148   1.407054275
## 1149   2.452136702
## 1150  -0.934792613
## 1151   1.110353751
## 1152  -2.171629061
## 1153   0.108007080
## 1154  -0.410686302
## 1155  -1.523732276
## 1156   0.252399008
## 1157   0.431287929
## 1158   0.547242335
## 1159   0.546819981
## 1160  -0.095161123
## 1161  -0.726619195
## 1162  -0.860841670
## 1163  -0.431344431
## 1164   3.221572848
## 1165   0.249040297
## 1166  -0.081927285
## 1167  -0.624354664
## 1168  -0.394809412
## 1169  -0.557736656
## 1170   0.100340864
## 1171   3.021686043
## 1172   1.260570229
## 1173  -0.410989305
## 1174  -0.146871045
## 1175   1.964353831
## 1176  -2.500153444
## 1177  -0.447536875
## 1178  -2.574574866
## 1179  -4.287548129
## 1180   1.153457810
## 1181   2.173666410
## 1182  -0.519943099
## 1183  -0.473815823
## 1184   0.432745124
## 1185  -2.281937336
## 1186  -0.056261091
## 1187  -0.007256448
## 1188  -2.612554921
## 1189   2.942839329
## 1190   0.008701550
## 1191   0.675950427
## 1192  -0.324858423
## 1193  -0.687838364
## 1194   0.269435765
## 1195   2.062511161
## 1196   0.916646877
## 1197  -0.421622496
## 1198  -1.474024780
## 1199  -0.299467592
## 1200   0.551409461
## 1201   1.084585807
## 1202  -1.037964724
## 1203   1.887821041
## 1204   0.244311617
## 1205  -0.342557943
## 1206   0.076218510
## 1207  -2.141643929
## 1208   0.011344198
## 1209  -0.208091283
## 1210   0.499466700
## 1211   0.352609206
## 1212  -1.971065657
## 1213  -0.118231244
## 1214  -0.737973540
## 1215   1.306761700
## 1216  -1.060298655
## 1217  -1.109264984
## 1218   1.848097802
## 1219   1.341300964
## 1220  -0.327415139
## 1221   0.711614165
## 1222  -0.964588141
## 1223   1.747049360
## 1224  -0.684578675
## 1225   0.606712182
## 1226  -0.396094186
## 1227   2.094981879
## 1228   3.738627328
## 1229  -0.048426414
## 1230   0.978287949
## 1231  -1.738942614
## 1232  -2.678693719
## 1233   1.991243173
## 1234  -0.075896678
## 1235   1.861303762
## 1236   0.279789378
## 1237  -0.704633114
## 1238  -2.245840330
## 1239  -0.491596345
## 1240   1.350821063
## 1241   1.159268941
## 1242   2.563835474
## 1243  -0.316994459
## 1244   0.131036611
## 1245  -0.816719847
## 1246  -0.519524394
## 1247  -1.123900063
## 1248   1.796256766
## 1249  -2.398445781
## 1250   2.224808670
## 1251   0.668688472
## 1252   0.133588247
## 1253   2.321659262
## 1254  -0.833244563
## 1255   6.647704218
## 1256  -0.081147508
## 1257   0.309002663
## 1258  -2.555130980
## 1259  -0.633583294
## 1260  -0.330585206
## 1261   0.493718836
## 1262  -0.552787196
## 1263   0.741720135
## 1264   0.196605577
## 1265  -2.125804693
## 1266  -1.779726127
## 1267   0.579019979
## 1268   0.291791195
## 1269   0.161875521
## 1270   0.212720644
## 1271  -1.134643593
## 1272   0.681981061
## 1273   0.498504138
## 1274  -1.386284271
## 1275  -0.220590580
## 1276   1.487585710
## 1277   0.537019055
## 1278   4.451643014
## 1279   0.770233782
## 1280  -0.758778647
## 1281  -1.786389883
## 1282   0.417687649
## 1283  -1.664440526
## 1284   1.122732640
## 1285  -0.452907306
## 1286   0.152293053
## 1287   1.933638283
## 1288  -0.097661837
## 1289   0.809181211
## 1290   0.051716281
## 1291  -1.233689147
## 1292  -0.049879862
## 1293   1.028282129
## 1294  -1.294527592
## 1295  -0.469395574
## 1296  -7.721252513
## 1297  -0.330432885
## 1298  -1.106866776
## 1299   0.399146461
## 1300   0.477407917
## 1301  -2.745928602
## 1302   2.059424546
## 1303  -0.235986960
## 1304  -1.394616728
## 1305   0.853551350
## 1306  -0.719213021
## 1307   0.036203143
## 1308   0.592916761
## 1309  -2.768588911
## 1310  -1.313387893
## 1311  -2.952215023
## 1312   0.830775706
## 1313  -1.441512502
## 1314  -0.663934636
## 1315   0.927809448
## 1316  -0.383536835
## 1317  -0.129197527
## 1318  -0.033924310
## 1319  -7.169829889
## 1320   0.007148680
## 1321   2.638155643
## 1322   1.860135094
## 1323   0.021305769
## 1324   1.521029847
## 1325   1.999452646
## 1326  -1.157030579
## 1327   0.756898977
## 1328   1.065187461
## 1329  -2.470330068
## 1330  -0.698741193
## 1331  -0.801165260
## 1332  -0.798597179
## 1333  -0.629974599
## 1334  -1.143161002
## 1335  -0.182075853
## 1336  -2.338966459
## 1337   0.066622219
## 1338  -0.690948538
## 1339  -0.470581019
## 1340  -0.347169990
## 1341  -1.957197143
## 1342  -1.233320257
## 1343   0.801232172
## 1344   1.200831630
## 1345  -0.390554845
## 1346   0.469616780
## 1347   1.782332491
## 1348  -2.149798084
## 1349  -2.613294156
## 1350   0.438782481
## 1351   1.139382762
## 1352  -0.308855219
## 1353   0.999896372
## 1354   0.314012020
## 1355   2.463681804
## 1356   2.215526503
## 1357   0.386637491
## 1358  -0.358231248
## 1359  -0.325300248
## 1360  -2.022475852
## 1361  -1.001495535
## 1362  -0.816259532
## 1363   0.521460410
## 1364  -0.297710762
## 1365   1.576904130
## 1366   0.534457372
## 1367  -0.720381551
## 1368  -0.101406070
## 1369  -1.039553163
## 1370  -1.173355442
## 1371   0.369268619
## 1372  -1.301283563
## 1373  -0.050649282
## 1374  -0.687560101
## 1375   1.527027773
## 1376  -1.194595115
## 1377   1.150533620
## 1378   0.287574264
## 1379   0.626507651
## 1380   0.968699197
## 1381   1.572480545
## 1382  -0.728840817
## 1383   2.159037325
## 1384  -0.667439741
## 1385  -0.602737372
## 1386   0.952528504
## 1387   1.936817690
## 1388  -0.987760178
## 1389   1.178225379
## 1390   3.077060534
## 1391  -1.053587017
## 1392   0.807477552
## 1393  -0.890167424
## 1394  -0.811802927
## 1395   0.417211818
## 1396  -1.407006337
## 1397  -0.780232333
## 1398  -0.381211875
## 1399  -3.201664166
## 1400  -1.108139876
## 1401  -0.325111693
## 1402   0.759960002
## 1403  -0.327380083
## 1404   5.274185714
## 1405  -0.833327398
## 1406   2.503631589
## 1407   0.460560479
## 1408  -0.935272631
## 1409  -0.345666893
## 1410   0.430683949
## 1411   0.696055383
## 1412   3.843824227
## 1413  -0.121868072
## 1414  -0.490721075
## 1415   0.926346776
## 1416  -0.461519136
## 1417   0.708146691
## 1418   0.503874891
## 1419   0.422430471
## 1420  -1.231466554
## 1421   1.218929365
## 1422   4.288494018
## 1423  -0.516789511
## 1424  -0.032704246
## 1425   0.180499676
## 1426   0.080421906
## 1427   0.318356439
## 1428   0.174124621
## 1429  -0.324119009
## 1430   0.321239852
## 1431   0.770467073
## 1432  -3.011207623
## 1433   0.090665245
## 1434   0.300468577
## 1435  -0.604616867
## 1436  -0.707905275
## 1437  -0.261749622
## 1438   0.406102311
## 1439  -0.302461886
## 1440   1.382221602
## 1441   0.017695113
## 1442   3.555920752
## 1443  -1.868913101
## 1444   0.500642572
## 1445  -0.076810316
## 1446  -1.360614021
## 1447  -0.702102041
## 1448  -0.017093657
## 1449   0.483282102
## 1450  -0.334988697
## 1451  -0.927678205
## 1452  -0.066942973
## 1453   0.057608258
## 1454   1.190272598
## 1455  -1.461951961
## 1456   4.419592157
## 1457  -1.042666916
## 1458  -1.371622876
## 1459   2.079175996
## 1460  -0.873932770
## 1461   0.871692904
## 1462   0.209582761
## 1463  -0.911768871
## 1464  -0.118634663
## 1465  -1.193339533
## 1466  -1.545605258
## 1467  -0.468149352
## 1468  -1.697889179
## 1469   0.661741562
## 1470   0.612425714
## 1471  -0.594900022
## 1472  -0.641563664
## 1473  -0.851446174
## 1474  -0.183969459
## 1475   0.824904247
## 1476  -0.554708352
## 1477   0.720919778
## 1478  -1.168043785
## 1479  -0.328803749
## 1480  -0.197667699
## 1481  -2.414323067
## 1482   0.462409501
## 1483  -0.962574080
## 1484  -0.020550655
## 1485   2.367209356
## 1486   0.158580545
## 1487  -0.091190936
## 1488  -1.076725631
## 1489   0.032262636
## 1490  -0.711142844
## 1491  -0.455510585
## 1492   1.098242092
## 1493  -0.059830299
## 1494  -0.611522224
## 1495  -0.626424025
## 1496   1.486783900
## 1497   1.595967258
## 1498  -0.888434140
## 1499  -0.266378633
## 1500  -0.939822603
## 1501   2.589398642
## 1502  -0.218828040
## 1503   0.563434027
## 1504   0.434432006
## 1505   0.262213953
## 1506  -3.118741247
## 1507  -0.617500114
## 1508   0.581591939
## 1509  -0.276759620
## 1510   0.288052321
## 1511  -1.598773475
## 1512   0.021832099
## 1513  -6.974078864
## 1514   0.486744176
## 1515   0.636557801
## 1516   0.392121118
## 1517   0.517205996
## 1518  -0.538942525
## 1519  -0.215029092
## 1520   1.416198851
## 1521   1.626127373
## 1522   0.158949634
## 1523   4.549209452
## 1524  -0.902323383
## 1525  -0.601068188
## 1526  -1.388538512
## 1527   1.554620950
## 1528   0.364235521
## 1529   1.002223331
## 1530  -1.030499393
## 1531  -1.006627222
## 1532   2.089119117
## 1533   1.178268951
## 1534   2.602879637
## 1535  -0.419353359
## 1536   1.181689843
## 1537   0.348529141
## 1538   4.254783630
## 1539  -1.137243337
## 1540   0.408030834
## 1541  -0.583707352
## 1542  -1.151355186
## 1543   1.358954598
## 1544  -1.147339306
## 1545  -0.472154839
## 1546   0.725269370
## 1547  -0.794886721
## 1548  -0.447723960
## 1549   0.109899936
## 1550   0.709707248
## 1551   1.138930354
## 1552  -0.507806136
## 1553  -2.214779536
## 1554   1.288584567
## 1555   0.721578976
## 1556  -0.367826188
## 1557   0.139879213
## 1558   4.781695259
## 1559  -1.016720590
## 1560  -0.432739357
## 1561  -1.077164801
## 1562   2.540890638
## 1563   0.689251719
## 1564  -1.013459415
## 1565  -2.515843294
## 1566  -0.673855328
## 1567  -0.375476789
## 1568  -0.916219044
## 1569   1.549304588
## 1570   1.360792750
## 1571   0.843166673
## 1572  -0.558579907
## 1573  -0.084642378
## 1574   0.439714247
## 1575   1.523576748
## 1576   0.145536798
## 1577  -0.875930356
## 1578   0.842339344
## 1579  -3.171521827
## 1580  -3.692743737
## 1581  -0.400794562
## 1582   1.911938625
## 1583  -0.566976032
## 1584  -0.968506736
## 1585  -1.115103942
## 1586   0.145175659
## 1587  -0.984834947
## 1588  -1.305448618
## 1589   3.295349848
## 1590  -1.165658689
## 1591  -1.845432609
## 1592   0.170522717
## 1593  -0.363562190
## 1594  -0.168452528
## 1595   1.698956155
## 1596  -1.386215391
## 1597  -1.489997078
## 1598  -0.814450078
## 1599  -1.014306255
## 1600   1.013378952
## 1601   0.351210846
## 1602  -1.469309772
## 1603  -2.843906663
## 1604  -0.451553048
## 1605  -0.437467998
## 1606  -0.661090971
## 1607  -2.364554960
## 1608  -3.947712307
## 1609   0.372874967
## 1610  -0.817729561
## 1611  -2.444505852
## 1612   1.831984089
## 1613  -0.644249182
## 1614   0.787011605
## 1615   1.959075243
## 1616   1.686181224
## 1617   1.278091026
## 1618  -0.566425596
## 1619  -0.101294954
## 1620   0.349554990
## 1621  -0.272791347
## 1622   1.763222216
## 1623  -1.297241599
## 1624  -0.282142273
## 1625   3.369303210
## 1626   0.038739340
## 1627   0.372240615
## 1628   2.176687667
## 1629   0.966583562
## 1630   0.294144531
## 1631  -0.924339801
## 1632  -0.805942341
## 1633   0.721619147
## 1634  -0.355998391
## 1635   0.818389503
## 1636  -0.699578508
## 1637   0.387726348
## 1638   1.463883367
## 1639  -0.245300158
## 1640  -0.218009542
## 1641   3.244028578
## 1642  -0.680401009
## 1643  -0.936290709
## 1644  -0.512382706
## 1645   1.086573712
## 1646  -1.093709977
## 1647   0.729652289
## 1648   0.548847371
## 1649   1.037099580
## 1650  -0.396714115
## 1651   2.791648679
## 1652  -0.805443037
## 1653  -0.584678755
## 1654  -0.356144843
## 1655  -0.404034530
## 1656   1.359927361
## 1657  -0.495495218
## 1658  -1.240287121
## 1659  -0.082211339
## 1660  -1.188018749
## 1661  -2.223184727
## 1662   0.705587014
## 1663  -0.848632473
## 1664  -2.613258924
## 1665  -0.863908222
## 1666  -2.107749753
## 1667   2.082153516
## 1668   1.496670703
## 1669   0.016416946
## 1670   1.014578005
## 1671  -0.361644011
## 1672   0.247235364
## 1673   1.144823453
## 1674  -0.047697451
## 1675   0.455343948
## 1676   0.994593364
## 1677  -0.822444222
## 1678  -0.244816328
## 1679  -1.082771869
## 1680   0.747409305
## 1681  -0.428650753
## 1682  -0.169425334
## 1683   1.605816199
## 1684   0.449971184
## 1685   0.730435284
## 1686   1.847506343
## 1687  -0.206396757
## 1688   0.380880583
## 1689   0.818313605
## 1690  -0.408848628
## 1691  -0.515786900
## 1692   0.974370595
## 1693  -0.133150873
## 1694   1.398333843
## 1695  -1.361151145
## 1696   0.433309662
## 1697  -0.946376931
## 1698  -0.670063632
## 1699   1.676048959
## 1700  -0.140611177
## 1701   0.053654636
## 1702   1.259689693
## 1703  -5.174206131
## 1704   0.788702296
## 1705  -1.993087093
## 1706   0.397864475
## 1707   2.134884681
## 1708  -0.710201299
## 1709   2.996060042
## 1710   0.510889890
## 1711   0.054068572
## 1712   0.605433933
## 1713   0.347134535
## 1714   1.103668504
## 1715   1.103076166
## 1716   1.332205225
## 1717   0.423082535
## 1718  -1.625596444
## 1719  -1.554203022
## 1720   0.006527303
## 1721   0.053696296
## 1722  -1.561823405
## 1723   0.207694829
## 1724   1.301721385
## 1725   0.603758316
## 1726  -2.775142964
## 1727   0.063536743
## 1728   2.740397766
## 1729  -2.752915518
## 1730   0.822732164
## 1731  -0.980567935
## 1732   3.973534763
## 1733  -0.740899772
## 1734   1.420636878
## 1735  -1.333517659
## 1736  -0.706797886
## 1737  -0.709147617
## 1738   3.371441854
## 1739   1.005492756
## 1740  -3.541571056
## 1741  -1.439834921
## 1742   3.286784985
## 1743  -0.122735530
## 1744  -0.437715190
## 1745   3.251385190
## 1746  -0.593354656
## 1747  -1.079917550
## 1748   0.606761232
## 1749  -1.127159142
## 1750   2.358211611
## 1751   0.763686667
## 1752   1.110251032
## 1753  -1.492509083
## 1754  -1.241463822
## 1755   4.439832289
## 1756   2.554971740
## 1757   0.660895643
## 1758   0.123687788
## 1759   1.333725257
## 1760   4.152832797
## 1761   1.217302777
## 1762   1.656895371
## 1763   0.353317077
## 1764  -0.657602012
## 1765  -0.381770876
## 1766   0.187400308
## 1767   1.939343087
## 1768   0.210374661
## 1769  -2.345500420
## 1770  -0.874157596
## 1771   0.540670356
## 1772   0.112802661
## 1773  -2.648256979
## 1774   0.597568786
## 1775  -0.137426550
## 1776   3.516064434
## 1777   0.102408252
## 1778   0.776033821
## 1779   0.930709076
## 1780   5.220574704
## 1781   0.736020501
## 1782  -0.990894962
## 1783  -0.274559644
## 1784  -1.016884505
## 1785  -0.221887192
## 1786  -0.445992770
## 1787   0.475688115
## 1788   0.785786694
## 1789  -0.130032635
## 1790  -0.394688042
## 1791  -2.323386527
## 1792   0.514375139
## 1793   1.492241939
## 1794   0.327791984
## 1795  -0.075720368
## 1796   0.514881334
## 1797  -1.119208961
## 1798  -0.180152878
## 1799   0.637308878
## 1800   3.964044307
## 1801  -0.144384160
## 1802   1.487932212
## 1803  -0.566635527
## 1804  -1.139370142
## 1805  -3.086612508
## 1806   0.862030400
## 1807   0.474449333
## 1808   0.961474292
## 1809  -0.538548656
## 1810   0.017726335
## 1811  -1.138437401
## 1812   0.121364311
## 1813  -0.978068660
## 1814   0.283660468
## 1815   0.242053638
## 1816  -0.117018330
## 1817   0.540950519
## 1818   1.580644887
## 1819   1.028931010
## 1820   1.015550193
## 1821   1.196996138
## 1822   0.230669296
## 1823   0.031274355
## 1824  -0.707303604
## 1825  -1.142676757
## 1826   1.804785405
## 1827   0.112926949
## 1828   0.477232896
## 1829  -0.476903681
## 1830  -0.692818107
## 1831   1.332466553
## 1832   2.318784256
## 1833   1.184052989
## 1834   1.141068630
## 1835   0.167916703
## 1836  -1.116243275
## 1837  -0.045689694
## 1838   0.596004263
## 1839  -0.748392267
## 1840  -0.060920315
## 1841  -1.444313228
## 1842  -0.044715427
## 1843  -0.056960004
## 1844   1.151901771
## 1845  -0.174865186
## 1846   0.545593634
## 1847  -0.692471122
## 1848  -0.734818390
## 1849   1.457787809
## 1850   0.875233226
## 1851   0.391506603
## 1852   1.740417860
## 1853  -0.388065238
## 1854  -0.877747675
## 1855   0.284135482
## 1856   0.111826285
## 1857   0.815318224
## 1858  -0.140032745
## 1859  -1.361405539
## 1860  -0.758963912
## 1861   0.360491065
## 1862  -0.205572385
## 1863  -0.363727621
## 1864   1.604171479
## 1865  -0.120997962
## 1866  -0.766683547
## 1867   0.468191113
## 1868  -1.837601301
## 1869   1.415300784
## 1870  -1.098654854
## 1871   0.035359762
## 1872   0.156320433
## 1873   1.539551984
## 1874   0.266961864
## 1875   1.352917387
## 1876  -0.404440536
## 1877   1.808759952
## 1878  -1.881284209
## 1879  -0.549492991
## 1880   2.526688917
## 1881   0.228924017
## 1882   0.513811303
## 1883   1.017006255
## 1884  -0.742499144
## 1885  -0.140586012
## 1886  -0.053718530
## 1887   0.803828055
## 1888   0.048360449
## 1889  -0.215828947
## 1890  -0.058291264
## 1891   0.864983841
## 1892  -1.356170107
## 1893  -0.617262864
## 1894  -1.402265309
## 1895  -0.523441459
## 1896   0.830853039
## 1897   0.317281478
## 1898   0.084830762
## 1899   2.121363127
## 1900   0.121462979
## 1901   0.834729191
## 1902   0.040652843
## 1903   0.722788277
## 1904  -0.747640271
## 1905   0.387297140
## 1906  -0.812770956
## 1907   1.454741416
## 1908   0.620606741
## 1909   0.833451137
## 1910  -1.683346033
## 1911   0.804701034
## 1912  -0.229263120
## 1913   0.046194911
## 1914  -0.166435185
## 1915  -1.112652661
## 1916  -1.073200728
## 1917  -0.046565310
## 1918   5.696117906
## 1919  -0.290236383
## 1920   1.207304711
## 1921  -0.762685782
## 1922  -1.497926637
## 1923  -0.822479149
## 1924   1.052504492
## 1925   1.198638323
## 1926  -0.126984105
## 1927  -2.196066627
## 1928   2.821882676
## 1929   0.888531536
## 1930   1.030936408
## 1931   0.557465035
## 1932   0.289026047
## 1933  -0.709589288
## 1934   1.018615649
## 1935   1.014718518
## 1936   0.118878497
## 1937  -2.353307515
## 1938  -0.463709158
## 1939  -3.089588325
## 1940  -2.124134818
## 1941  -3.397232314
## 1942   0.910430585
## 1943  -1.056790935
## 1944  -0.262030547
## 1945   0.607755870
## 1946   0.403856235
## 1947   1.412269952
## 1948   0.422769816
## 1949  -0.005290671
## 1950  -0.361825063
## 1951   2.228995584
## 1952  -0.093855139
## 1953   0.088769126
## 1954   2.985708776
## 1955  -1.616981175
## 1956  -0.814294262
## 1957  -0.579969780
## 1958  -0.532228413
## 1959   0.475891817
## 1960  -0.028348796
## 1961  -0.097690038
## 1962  -1.338162601
## 1963  -1.294586067
## 1964   0.687677162
## 1965  -0.201650989
## 1966  -0.658662267
## 1967  -0.364505858
## 1968  -0.822221317
## 1969   3.268173150
## 1970  -4.967636498
## 1971  -0.584376271
## 1972  -1.161526012
## 1973  -0.244878422
## 1974   3.032321344
## 1975  -1.812160139
## 1976  -1.261326720
## 1977  -2.309825696
## 1978   0.131785814
## 1979  -0.512137299
## 1980  -2.212688313
## 1981  -0.833872274
## 1982   0.185610652
## 1983  -0.141494928
## 1984   0.109487405
## 1985   0.089989645
## 1986   0.668121661
## 1987  -0.430441702
## 1988   0.792453656
## 1989  -1.400129839
## 1990  -0.215107105
## 1991  -0.085294745
## 1992   0.437635054
## 1993   1.414558604
## 1994  -1.470842044
## 1995   0.204152049
## 1996  -0.603812902
## 1997   0.788499060
## 1998   0.489937346
## 1999  -1.605398619
## 2000   0.409543307

Let’s plot our simulated t scores alongside a normal distribution.

# Don't worry about the syntax here.
# You won't need to know how to do this on your own.
ggplot(sims_t, aes(x = sim_t)) +
    geom_histogram(aes(y = ..density..), binwidth = 0.25) +
    scale_x_continuous(limits = c(-5, 5),
                       breaks = c(-4, -3, -2, -1, 0, 1, 2, 3, 4)) +
    stat_function(fun = dnorm, args = list(mean = 0, sd = 1),
                  color = "red", size = 1.5)
## Warning: Removed 19 rows containing non-finite values (stat_bin).
## Warning: Removed 2 rows containing missing values (geom_bar).

These t scores are somewhat close to the normal model we had when we knew \(\sigma\), but the fit doesn’t look quite right. The peak of the simulated values isn’t quite high enough, and the tails seem to spill out over the much thinner tails of the normal model.

William Gosset figured this all out in the early 20th century. While working for the Guinness brewery in Dublin, Ireland, he started noticing that his quality control tests (using very small sample sizes) didn’t yield statistical results consistent with the normal models that were universally used at the time. At the encouragement of the company, which saw his work as a potential source of cost savings, he took some time off to study and consult with other statisticians. As a result, he found a new function that is similar to a normal distribution but is more spread out. This new function accounts for the extra variability one gets when using the sample standard deviation \(s\) as an estimate for the true population standard deviation \(\sigma\). Guinness considered the result a “trade secret”, so they wouldn’t allow Gosset to publish under his own name. But they did permit him to publish his findings under the pseudonym “Student”. He used data sets unrelated to brewing and submitted his work to the top statistical journal of the time.

The new function Gosset discovered became known as the Student t distribution. He realized that the spread of the t distribution depends on the sample size. This makes sense: the accuracy of \(s\) will be greater when we have a larger sample. In fact, for large enough samples, the t distribution is very close to a normal model.

Gosset used the term degrees of freedom to describe how the sample size influences the spread of the t distribution. It’s somewhat mathematical and technical, so suffice it to say here that the number of degrees of freedom is simply the sample size minus 1:

\[ df = n - 1. \]

So is the t model correct for our simulated t scores? Our sample size was 4, so we should use a t model with 3 degrees of freedom. Let’s plot it in green on top of our previous graph and see:

# Don't worry about the syntax here.
# You won't need to know how to do this on your own.
ggplot(sims_t, aes(x = sim_t)) +
    geom_histogram(aes(y = ..density..), binwidth = 0.25) +
    scale_x_continuous(limits = c(-5, 5),
                       breaks = c(-4, -3, -2, -1, 0, 1, 2, 3, 4)) +
    stat_function(fun = dnorm, args = list(mean = 0, sd = 1),
                  color = "red", size = 1.5) +
    stat_function(fun = dt, args = list(df = 3),
                  color = "green", size = 1.5)
## Warning: Removed 19 rows containing non-finite values (stat_bin).
## Warning: Removed 2 rows containing missing values (geom_bar).

The green curve fits the simulated values much better.

19.6 Inference for one mean

When we have a single numerical variable, we can ask if the sample mean is consistent or not with a null hypothesis. We will use a t model for our sampling distribution model as long as certain conditions are met.

One of the assumptions we made in the simulation above was that the true population was normally distributed. In general, we have no way of knowing if this is true. So instead we check the nearly normal condition: if a histogram or QQ plot of our data shows that the data is nearly normal, then there is a reasonable assumption that the whole population is shaped the same way.

If our sample size is large enough, the central limit theorem tells us that the sampling distribution gets closer and closer to a normal model. Therefore, we’ll use a rule of thumb that says that if the sample size is greater than 30, we won’t worry too much about any deviations from normality in the data.

The number 30 is somewhat arbitrary. If the sample size is 25 and a histogram shows only a little skewness, we’re probably okay. But if the sample size is 10, we need for the data to be very normal to justify using the t model. The irony, of course, is that small sample sizes are the hardest to check for normality. We’ll have to use our best judgment.

19.7 Outliers

We also need to be on the lookout for outliers. We’ve seen before that outliers can have a huge effect on means and standard deviations, especially when sample sizes are small. Whenever we find an outlier, we need to investigate.

Some outliers are mistakes. Perhaps someone entered data incorrectly into the computer. When it’s clear that outliers are data entry errors, we are free to either correct them (if we know what error was made) or delete them from our data completely.

Some outliers are not necessarily mistakes, but should be excluded for other reasons. For example, if we are studying the weight of birds and we have sampled a bunch of hummingbirds and one emu, the emu’s weight will appear as an outlier. It’s not that its weight is “wrong”, but it clearly doesn’t belong in the analysis.

In general, though, outliers are real data that just happen to be unusual. It’s not ethical simply to throw away such data points because they are inconvenient. (We only do so in very narrow and well-justified circumstances like the emu.) The best policy to follow when faced with such outliers is to run inference twice—once with the outlier included, and once with the outlier excluded. If, when running a hypothesis test, the conclusion is the same either way, then the outlier wasn’t all that influential, so we leave it in. If, when computing a confidence interval, the endpoints don’t change a lot either way, then we leave the outlier in. However, when conclusions or intervals are dramatically different depending on whether the outlier was in or out, then we have no choice but to state that honestly.

19.8 Research question

The teacher data from the openintro package contains information on 71 teachers employed by the St. Louis Public School in Michigan. According to Google, the average teacher salary in Michigan was $63,024 in 2010. So does this data suggest that the teachers in the St. Louis region of Michigan are paid differently than teachers in other parts of Michigan?

Let’s walk through the rubric.

19.9 Exploratory data analysis

19.9.1 Use data documentation (help files, code books, Google, etc.) to determine as much as possible about the data provenance and structure.

You should type ?teacher at the Console to read the help file. Unfortunately, the help file does not give us a lot of information about how the data was collected. The only source listed is a website that no longer contains this data set. Besides, that website is just an open repository for data, so it’s not clear that the site would have contained any additional information about the provenance of the data. We will have to assume that the data was collected accurately.

Here is the data set:

teacher
## # A tibble: 71 × 8
##    id    degree fte   years  base  fica retirement  total
##  * <fct> <fct>  <fct> <dbl> <int> <dbl>      <dbl>  <dbl>
##  1 01    BA     1       5   45388 3472.      7689. 56549.
##  2 02    MA     1      15   60649 4640.     10274. 75563.
##  3 03    MA     1      16   60649 4640.     10274. 75563.
##  4 04    BA     1      10   54466 4167.      9227. 67859.
##  5 05    BA     1      26   65360 5000.     11072. 81432.
##  6 06    BA     1      28.5 65360 5000.     11072. 81432.
##  7 07    BA     1      12   58097 4444.      9842. 72383.
##  8 08    MA     1      32   68230 5220.     11558. 85008.
##  9 09    BA     1      25   65360 5000.     11072. 81432.
## 10 11    BA     1      12   58097 4444.      9842. 72383.
## # … with 61 more rows
glimpse(teacher)
## Rows: 71
## Columns: 8
## $ id         <fct> 01, 02, 03, 04, 05, 06, 07, 08, 09, 11, 12, 13, 14, 15, 16,…
## $ degree     <fct> BA, MA, MA, BA, BA, BA, BA, MA, BA, BA, BA, BA, BA, BA, MA,…
## $ fte        <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ years      <dbl> 5.0, 15.0, 16.0, 10.0, 26.0, 28.5, 12.0, 32.0, 25.0, 12.0, …
## $ base       <int> 45388, 60649, 60649, 54466, 65360, 65360, 58097, 68230, 653…
## $ fica       <dbl> 3472.18, 4639.65, 4639.65, 4166.65, 5000.04, 5000.04, 4444.…
## $ retirement <dbl> 7688.73, 10273.94, 10273.94, 9226.54, 11071.98, 11071.98, 9…
## $ total      <dbl> 56548.91, 75562.59, 75562.59, 67859.19, 81432.02, 81432.02,…

Since total is a numerical variable, we can use the summary function to produce the five-number summary. (The function also reports the mean.)

summary(teacher$total)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   24793   63758   74647   70289   81432   85008

19.9.2 Prepare the data for analysis.

Not necessary here, but see the next section to find out what we do when we discover an outlier.

19.9.3 Make tables or plots to explore the data visually.

Here is a histogram.

ggplot(teacher, aes(x = total)) +
    geom_histogram(binwidth = 5000, boundary = 60000)

And here is a QQ plot.

ggplot(teacher, aes(sample = total)) +
    geom_qq() +
    geom_qq_line()

This distribution is quite skewed to the left. Of even more concern is the extreme outlier on the left.

With any outlier, we need to investigate.

Exercise 1

Let’s sort the data by total (ascending) using the arrange command.

teacher %>%
    arrange(total)
## # A tibble: 71 × 8
##    id    degree fte   years  base  fica retirement  total
##    <fct> <fct>  <fct> <dbl> <int> <dbl>      <dbl>  <dbl>
##  1 37    MA     0.5       1 19900 1522.      3371. 24793.
##  2 12    BA     1         0 35427 2710.      6001. 44138.
##  3 57    BA     1         0 35427 2710.      6001. 44138.
##  4 41    BA     1         1 37199 2846.      6302. 46346.
##  5 69    BA     1         2 38968 2981.      6601. 48550.
##  6 48    BA     1         3 40739 3117.      6901. 50757.
##  7 54    BA     1         3 40739 3117.      6901. 50757.
##  8 38    MA     1         2 41695 3190.      7063. 51948.
##  9 15    BA     1         4 43575 3333.      7382. 54290.
## 10 39    MA     1         3 43593 3335.      7385. 54313.
## # … with 61 more rows

Can you figure out why the person with the lowest total salary is different from all the other teachers?

Please write up your answer here.


Based on your answer to the above exercise, hopefully it’s clear that this is an outlier for which we can easily justify exclusion. We can use the filter command to get only the rows we want. There are lots of ways to do this, but it’s easy enough to grab only salaries above $30,000. (There’s only one salary below $30,000, so that outlier will be excluded.)

CAUTION: If you are copying and pasting from this example to use for another research question, the following code chuck is specific to this research question and not applicable in other contexts.

teacher2 <- teacher %>%
    filter(total > 30000)

Check to make sure this had the desired effect:

summary(teacher2$total)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   44138   63758   74647   70939   81432   85008

Notice how the min is no longer $24,793.41.

Here are the new plots:

ggplot(teacher2, aes(x = total)) +
    geom_histogram(binwidth = 5000, boundary = 60000)

ggplot(teacher2, aes(sample = total)) +
    geom_qq() +
    geom_qq_line()

The left skew is still present, but we have removed the outlier.

19.10 Hypotheses

19.10.1 Identify the sample (or samples) and a reasonable population (or populations) of interest.

The sample consists of 70 teachers employed by the St. Louis Public School in Michigan. We are using these 70 teachers as a hopefully representative sample of all teachers in that region of Michigan.

19.10.2 Express the null and alternative hypotheses as contextually meaningful full sentences.

\(H_{0}:\) Teachers in the St. Louis region earn $63,024 on average. (In other words, these teachers are the same as the teachers anywhere else in Michigan.)

\(H_{A}:\) Teachers in the St. Louis region do not earn $63,024 on average. (In other words, these teachers are not the same as the teachers anywhere else in Michigan.)

19.10.3 Express the null and alternative hypotheses in symbols (when possible).

\(H_0: \mu = 63024\)

\(H_A: \mu \neq 63024\)

19.11 Model

19.11.1 Identify the sampling distribution model.

We will use a t model with 69 degrees of freedom.

Commentary: The original teacher data had 71 observations. The teacher2 data has only 70 observations because we removed an outlier. Therefore \(n = 70\) and thus \(df = n - 1 = 69\).

19.11.2 Check the relevant conditions to ensure that model assumptions are met.

  • Random
    • We know this isn’t a random sample. We’re not sure if this school is representative of other schools in the region, so we’ll proceed with caution.
  • 10%
    • This is also suspect, as it’s not clear that there are 700 teachers in the region. One way to look at it is this: if there are 10 or more schools in the region, and all the school are about the size of the St. Louis Public School under consideration, then we should be okay.
  • Nearly Normal
    • For this, we note that the sample size is much larger than 30, so we should be okay, even with the skewness in the data.

19.12 Mechanics

19.12.1 Compute the test statistic.

total_mean <- teacher2 %>%
  specify(response = total) %>%
  calculate(stat = "mean")
total_mean
## Response: total (numeric)
## # A tibble: 1 × 1
##     stat
##    <dbl>
## 1 70939.
total_t <- teacher2 %>%
  specify(response = total) %>%
  hypothesize(null = "point", mu = 63024) %>%
  calculate(stat = "t")
total_t
## Response: total (numeric)
## Null Hypothesis: point
## # A tibble: 1 × 1
##    stat
##   <dbl>
## 1  5.89

19.12.2 Report the test statistic in context (when possible).

The sample mean is $70938.5725714.

The t score is 5.886253. The mean teacher salary in our sample is almost 6 standard errors to the right of the null value.

19.12.3 Plot the null distribution.

total_test <- teacher2 %>%
  specify(response = total) %>%
  assume("t")
total_test
## A T distribution with 69 degrees of freedom.
total_test %>%
  visualize() +
  shade_p_value(obs_stat = total_t, direction = "two-sided")

Commentary: Although we are conducting a two-sided test, the area in the tails is so small that it can’t really be seen in the picture above.

19.12.4 Calculate the P-value.

total_test_p <- total_test %>%
  get_p_value(obs_stat = total_t, direction = "two-sided")
total_test_p
## # A tibble: 1 × 1
##       p_value
##         <dbl>
## 1 0.000000129

19.12.5 Interpret the P-value as a probability given the null.

\(P < 0.001\). If teachers in the St. Louis region truly earned $63,024 on average, there would be only a 0.0000129% chance of seeing data at least as extreme as what we saw.

Commentary: When the P-value is this small, remember that it is traditional to report simply \(P < 0.001\).

19.13 Conclusion

19.13.1 State the statistical conclusion.

We reject the null hypothesis.

19.13.2 State (but do not overstate) a contextually meaningful conclusion.

There is sufficient evidence that teachers in the St. Louis region do not earn $63,024 on average.

19.13.3 Express reservations or uncertainty about the generalizability of the conclusion.

Because we do not know how this data was collected (was it every teacher in this region? was it a sample of some of the teachers? was it a representative sample?), we do not know if we can generalize it to all teachers in the region. Also, the data set was from 2010, so we know that this data cannot be applied to teachers in St. Louis, Michigan now.

19.13.4 Identify the possibility of either a Type I or Type II error and state what making such an error means in the context of the hypotheses.

If we’ve made a Type I error, then the truth is that teachers in this region do make around $63,024 on average, but our sample was way off.

19.14 Confidence interval

19.14.1 Check the relevant conditions to ensure that model assumptions are met.

All the conditions have been checked already.

19.14.2 Calculate and graph the confidence interval.

total_ci <- total_test %>%
  get_confidence_interval(point_estimate = total_mean, level = 0.95)
total_ci
## # A tibble: 1 × 2
##   lower_ci upper_ci
##      <dbl>    <dbl>
## 1   68256.   73621.
total_test %>%
  visualize() +
  shade_confidence_interval(endpoints = total_ci)

19.14.3 State (but do not overstate) a contextually meaningful interpretation.

We are 95% confident that the true mean salary for teachers in the St. Louis region is captured in the interval (68256.2, 73620.95).

Commentary: As these are dollar amounts, it makes sense to round them to two decimal places. Even then, R is finicky and sometimes it will not respect your wishes.)

19.14.4 If running a two-sided test, explain how the confidence interval reinforces the conclusion of the hypothesis test.

Since $63,024 is not contained in the confidence interval, it is not a plausible value for the mean teacher salary in the St Louis region of Michigan.

19.14.5 When comparing two groups, comment on the effect size and the practical significance of the result.

We are not comparing two groups.

19.15 Your turn

In the High School and Beyond survey (the hsb2 data set from the openintro package), among the many scores that are recorded are standardized math scores. Suppose that these scores are normalized so that a score of 50 represents some kind of international average. (This is not really true. I had to make something up here to give you a baseline number with which to work.) The question is, then, are American students different from this international baseline?

The rubric outline is reproduced below. You may refer to the worked example above and modify it accordingly. Remember to strip out all the commentary. That is just exposition for your benefit in understanding the steps, but is not meant to form part of the formal inference process.

Another word of warning: the copy/paste process is not a substitute for your brain. You will often need to modify more than just the names of the data frames and variables to adapt the worked examples to your own work. Do not blindly copy and paste code without understanding what it does. And you should never copy and paste text. All the sentences and paragraphs you write are expressions of your own analysis. They must reflect your own understanding of the inferential process.

Also, so that your answers here don’t mess up the code chunks above, use new variable names everywhere.

Exploratory data analysis
Use data documentation (help files, code books, Google, etc.) to determine as much as possible about the data provenance and structure.

Please write up your answer here

# Add code here to print the data
# Add code here to glimpse the variables
Prepare the data for analysis. [Not always necessary.]
# Add code here to prepare the data for analysis.
Make tables or plots to explore the data visually.
# Add code here to make tables or plots.
Hypotheses
Identify the sample (or samples) and a reasonable population (or populations) of interest.

Please write up your answer here.

Express the null and alternative hypotheses as contextually meaningful full sentences.

\(H_{0}:\) Null hypothesis goes here.

\(H_{A}:\) Alternative hypothesis goes here.

Express the null and alternative hypotheses in symbols (when possible).

\(H_{0}: math\)

\(H_{A}: math\)

Model
Identify the sampling distribution model.

Please write up your answer here.

Check the relevant conditions to ensure that model assumptions are met.

Please write up your answer here. (Some conditions may require R code as well.)

Mechanics
Compute the test statistic.
# Add code here to compute the test statistic.
Report the test statistic in context (when possible).

Please write up your answer here.

Plot the null distribution.
# IF CONDUCTING A SIMULATION...
set.seed(1)
# Add code here to simulate the null distribution.
# Add code here to plot the null distribution.
Calculate the P-value.
# Add code here to calculate the P-value.
Interpret the P-value as a probability given the null.

Please write up your answer here.

Conclusion
State the statistical conclusion.

Please write up your answer here. {-}

State (but do not overstate) a contextually meaningful conclusion.

Please write up your answer here.

Express reservations or uncertainty about the generalizability of the conclusion.

Please write up your answer here.

Identify the possibility of either a Type I or Type II error and state what making such an error means in the context of the hypotheses.

Please write up your answer here.

Confidence interval
Check the relevant conditions to ensure that model assumptions are met.

Please write up your answer here. (Some conditions may require R code as well.)

Calculate and graph the confidence interval.
# Add code here to calculate the confidence interval.
# Add code here to graph the confidence interval.
State (but do not overstate) a contextually meaningful interpretation.

Please write up your answer here.

If running a two-sided test, explain how the confidence interval reinforces the conclusion of the hypothesis test. [Not always applicable.]

Please write up your answer here.

When comparing two groups, comment on the effect size and the practical significance of the result. [Not always applicable.]

Please write up your answer here.

19.16 Additional exercises

After running inference above, answer the following questions:

Exercise 2

Even though the result was statistically significant, do you think the result is practically significant? By this, I mean, are scores for American students so vastly different than 50? Do we have a lot of reason to brag about American scores based on your analysis?

Please write up your answer here.

Exercise 3

What makes it possible for a small effect like this to be statistically significant even if it’s not practically very different from 50? In other words, what has to be true of data to detect small but statistically significant effects?

Please write up your answer here.

19.17 Conclusion

When working with numerical data, we have to estimate a mean and a standard deviation. The extra variability in estimating both gives rise to a sampling distribution model with thicker tails called the Student t distribution. Using this distribution gives us a way to calculate P-values and confidence intervals that take this variation into account.

19.17.1 Preparing and submitting your assignment

  1. From the “Run” menu, select “Restart R and Run All Chunks”.
  2. Deal with any code errors that crop up. Repeat steps 1–-2 until there are no more code errors.
  3. Spell check your document by clicking the icon with “ABC” and a check mark.
  4. Hit the “Preview” button one last time to generate the final draft of the .nb.html file.
  5. Proofread the HTML file carefully. If there are errors, go back and fix them, then repeat steps 1–5 again.

If you have completed this chapter as part of a statistics course, follow the directions you receive from your professor to submit your assignment.